⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bitops.h

📁 Linux内核源代码 为压缩文件 是<<Linux内核>>一书中的源代码
💻 H
字号:
/* $Id: bitops.h,v 1.7 1999/08/19 22:56:33 ralf Exp $ * * This file is subject to the terms and conditions of the GNU General Public * License.  See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 1994 - 1997, 1999  Ralf Baechle (ralf@gnu.org) */#ifndef _ASM_BITOPS_H#define _ASM_BITOPS_H#include <linux/types.h>#include <asm/byteorder.h>		/* sigh ... */#ifdef __KERNEL__#include <asm/sgidefs.h>#include <asm/system.h>#include <linux/config.h>/* * Only disable interrupt for kernel mode stuff to keep usermode stuff * that dares to use kernel include files alive. */#define __bi_flags unsigned long flags#define __bi_cli() __cli()#define __bi_save_flags(x) __save_flags(x)#define __bi_save_and_cli(x) __save_and_cli(x)#define __bi_restore_flags(x) __restore_flags(x)#else#define __bi_flags#define __bi_cli()#define __bi_save_flags(x)#define __bi_save_and_cli(x)#define __bi_restore_flags(x)#endif /* __KERNEL__ *//* * Note that the bit operations are defined on arrays of 32 bit sized * elements.  With respect to a future 64 bit implementation it is * wrong to use long *.  Use u32 * or int *. */extern __inline__ void set_bit(int nr, void *addr);extern __inline__ void clear_bit(int nr, void *addr);extern __inline__ void change_bit(int nr, void *addr);extern __inline__ int test_and_set_bit(int nr, void *addr);extern __inline__ int test_and_clear_bit(int nr, void *addr);extern __inline__ int test_and_change_bit(int nr, void *addr);extern __inline__ int test_bit(int nr, const void *addr);#ifndef __MIPSEB__extern __inline__ int find_first_zero_bit (void *addr, unsigned size);#endifextern __inline__ int find_next_zero_bit (void * addr, int size, int offset);extern __inline__ unsigned long ffz(unsigned long word);#if defined(CONFIG_CPU_HAS_LLSC)#include <asm/mipsregs.h>/* * These functions for MIPS ISA > 1 are interrupt and SMP proof and * interrupt friendly *//* * The following functions will only work for the R4000! */extern __inline__ void set_bit(int nr, void *addr){	int	mask, mw;	addr += ((nr >> 3) & ~3);	mask = 1 << (nr & 0x1f);	do {		mw = load_linked(addr);	} while (!store_conditional(addr, mw|mask));}extern __inline__ void clear_bit(int nr, void *addr){	int	mask, mw;	addr += ((nr >> 3) & ~3);	mask = 1 << (nr & 0x1f);	do {		mw = load_linked(addr);		}	while (!store_conditional(addr, mw & ~mask));}extern __inline__ void change_bit(int nr, void *addr){	int	mask, mw;	addr += ((nr >> 3) & ~3);	mask = 1 << (nr & 0x1f);	do {		mw = load_linked(addr);	} while (!store_conditional(addr, mw ^ mask));}extern __inline__ int test_and_set_bit(int nr, void *addr){	int	mask, retval, mw;	addr += ((nr >> 3) & ~3);	mask = 1 << (nr & 0x1f);	do {		mw = load_linked(addr);		retval = (mask & mw) != 0;	} while (!store_conditional(addr, mw|mask));	return retval;}extern __inline__ int test_and_clear_bit(int nr, void *addr){	int	mask, retval, mw;	addr += ((nr >> 3) & ~3);	mask = 1 << (nr & 0x1f);	do {		mw = load_linked(addr);		retval = (mask & mw) != 0;		}	while (!store_conditional(addr, mw & ~mask));	return retval;}extern __inline__ int test_and_change_bit(int nr, void *addr){	int	mask, retval, mw;	addr += ((nr >> 3) & ~3);	mask = 1 << (nr & 0x1f);	do {		mw = load_linked(addr);		retval = (mask & mw) != 0;	} while (!store_conditional(addr, mw ^ mask));	return retval;}#else /* MIPS I */extern __inline__ void set_bit(int nr, void * addr){	int	mask;	int	*a = addr;	__bi_flags;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	__bi_save_and_cli(flags);	*a |= mask;	__bi_restore_flags(flags);}extern __inline__ void clear_bit(int nr, void * addr){	int	mask;	int	*a = addr;	__bi_flags;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	__bi_save_and_cli(flags);	*a &= ~mask;	__bi_restore_flags(flags);}extern __inline__ void change_bit(int nr, void * addr){	int	mask;	int	*a = addr;	__bi_flags;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	__bi_save_and_cli(flags);	*a ^= mask;	__bi_restore_flags(flags);}extern __inline__ int test_and_set_bit(int nr, void * addr){	int	mask, retval;	int	*a = addr;	__bi_flags;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	__bi_save_and_cli(flags);	retval = (mask & *a) != 0;	*a |= mask;	__bi_restore_flags(flags);	return retval;}extern __inline__ int test_and_clear_bit(int nr, void * addr){	int	mask, retval;	int	*a = addr;	__bi_flags;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	__bi_save_and_cli(flags);	retval = (mask & *a) != 0;	*a &= ~mask;	__bi_restore_flags(flags);	return retval;}extern __inline__ int test_and_change_bit(int nr, void * addr){	int	mask, retval;	int	*a = addr;	__bi_flags;	a += nr >> 5;	mask = 1 << (nr & 0x1f);	__bi_save_and_cli(flags);	retval = (mask & *a) != 0;	*a ^= mask;	__bi_restore_flags(flags);	return retval;}#undef __bi_flags#undef __bi_cli()#undef __bi_save_flags(x)#undef __bi_restore_flags(x)#endif /* MIPS I */extern __inline__ int test_bit(int nr, const void *addr){	return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0;}#ifndef __MIPSEB__/* Little endian versions. */extern __inline__ int find_first_zero_bit (void *addr, unsigned size){	unsigned long dummy;	int res;	if (!size)		return 0;	__asm__ (".set\tnoreorder\n\t"		".set\tnoat\n"		"1:\tsubu\t$1,%6,%0\n\t"		"blez\t$1,2f\n\t"		"lw\t$1,(%5)\n\t"		"addiu\t%5,4\n\t"#if (_MIPS_ISA == _MIPS_ISA_MIPS2) || (_MIPS_ISA == _MIPS_ISA_MIPS3) || \    (_MIPS_ISA == _MIPS_ISA_MIPS4) || (_MIPS_ISA == _MIPS_ISA_MIPS5)		"beql\t%1,$1,1b\n\t"		"addiu\t%0,32\n\t"#else		"addiu\t%0,32\n\t"		"beq\t%1,$1,1b\n\t"		"nop\n\t"		"subu\t%0,32\n\t"#endif#ifdef __MIPSEB__#error "Fix this for big endian"#endif /* __MIPSEB__ */		"li\t%1,1\n"		"1:\tand\t%2,$1,%1\n\t"		"beqz\t%2,2f\n\t"		"sll\t%1,%1,1\n\t"		"bnez\t%1,1b\n\t"		"add\t%0,%0,1\n\t"		".set\tat\n\t"		".set\treorder\n"		"2:"		: "=r" (res),		  "=r" (dummy),		  "=r" (addr)		: "0" ((signed int) 0),		  "1" ((unsigned int) 0xffffffff),		  "2" (addr),		  "r" (size)		: "$1");	return res;}extern __inline__ int find_next_zero_bit (void * addr, int size, int offset){	unsigned int *p = ((unsigned int *) addr) + (offset >> 5);	int set = 0, bit = offset & 31, res;	unsigned long dummy;		if (bit) {		/*		 * Look for zero in first byte		 */#ifdef __MIPSEB__#error "Fix this for big endian byte order"#endif		__asm__(".set\tnoreorder\n\t"			".set\tnoat\n"			"1:\tand\t$1,%4,%1\n\t"			"beqz\t$1,1f\n\t"			"sll\t%1,%1,1\n\t"			"bnez\t%1,1b\n\t"			"addiu\t%0,1\n\t"			".set\tat\n\t"			".set\treorder\n"			"1:"			: "=r" (set),			  "=r" (dummy)			: "0" (0),			  "1" (1 << bit),			  "r" (*p)			: "$1");		if (set < (32 - bit))			return set + offset;		set = 32 - bit;		p++;	}	/*	 * No zero yet, search remaining full bytes for a zero	 */	res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr));	return offset + set + res;}#endif /* !(__MIPSEB__) *//* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */extern __inline__ unsigned long ffz(unsigned long word){	unsigned int	__res;	unsigned int	mask = 1;	__asm__ (		".set\tnoreorder\n\t"		".set\tnoat\n\t"		"move\t%0,$0\n"		"1:\tand\t$1,%2,%1\n\t"		"beqz\t$1,2f\n\t"		"sll\t%1,1\n\t"		"bnez\t%1,1b\n\t"		"addiu\t%0,1\n\t"		".set\tat\n\t"		".set\treorder\n"		"2:\n\t"		: "=&r" (__res), "=r" (mask)		: "r" (word), "1" (mask)		: "$1");	return __res;}#ifdef __KERNEL__/* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */#define ffs(x) generic_ffs(x)/* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */#define hweight32(x) generic_hweight32(x)#define hweight16(x) generic_hweight16(x)#define hweight8(x) generic_hweight8(x)#endif /* __KERNEL__ */#ifdef __MIPSEB__/* For now I steal the Sparc C versions, no need for speed, just need to * get it working. *//* find_next_zero_bit() finds the first zero bit in a bit string of length * 'size' bits, starting the search at bit 'offset'. This is largely based * on Linus's ALPHA routines, which are pretty portable BTW. */extern __inline__ int find_next_zero_bit(void *addr, int size, int offset){	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);	unsigned long result = offset & ~31UL;	unsigned long tmp;	if (offset >= size)		return size;	size -= result;	offset &= 31UL;	if (offset) {		tmp = *(p++);		tmp |= ~0UL >> (32-offset);		if (size < 32)			goto found_first;		if (~tmp)			goto found_middle;		size -= 32;		result += 32;	}	while (size & ~31UL) {		if (~(tmp = *(p++)))			goto found_middle;		result += 32;		size -= 32;	}	if (!size)		return result;	tmp = *p;found_first:	tmp |= ~0UL << size;found_middle:	return result + ffz(tmp);}/* Linus sez that gcc can optimize the following correctly, we'll see if this * holds on the Sparc as it does for the ALPHA. */#define find_first_zero_bit(addr, size) \        find_next_zero_bit((addr), (size), 0)#endif /* (__MIPSEB__) *//* Now for the ext2 filesystem bit operations and helper routines. */#ifdef __MIPSEB__extern __inline__ int ext2_set_bit(int nr,void * addr){	int		mask, retval, flags;	unsigned char	*ADDR = (unsigned char *) addr;	ADDR += nr >> 3;	mask = 1 << (nr & 0x07);	save_and_cli(flags);	retval = (mask & *ADDR) != 0;	*ADDR |= mask;	restore_flags(flags);	return retval;}extern __inline__ int ext2_clear_bit(int nr, void * addr){	int		mask, retval, flags;	unsigned char	*ADDR = (unsigned char *) addr;	ADDR += nr >> 3;	mask = 1 << (nr & 0x07);	save_and_cli(flags);	retval = (mask & *ADDR) != 0;	*ADDR &= ~mask;	restore_flags(flags);	return retval;}extern __inline__ int ext2_test_bit(int nr, const void * addr){	int			mask;	const unsigned char	*ADDR = (const unsigned char *) addr;	ADDR += nr >> 3;	mask = 1 << (nr & 0x07);	return ((mask & *ADDR) != 0);}#define ext2_find_first_zero_bit(addr, size) \        ext2_find_next_zero_bit((addr), (size), 0)extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset){	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);	unsigned long result = offset & ~31UL;	unsigned long tmp;	if (offset >= size)		return size;	size -= result;	offset &= 31UL;	if(offset) {		/* We hold the little endian value in tmp, but then the		 * shift is illegal. So we could keep a big endian value		 * in tmp, like this:		 *		 * tmp = __swab32(*(p++));		 * tmp |= ~0UL >> (32-offset);		 *		 * but this would decrease preformance, so we change the		 * shift:		 */		tmp = *(p++);		tmp |= __swab32(~0UL >> (32-offset));		if(size < 32)			goto found_first;		if(~tmp)			goto found_middle;		size -= 32;		result += 32;	}	while(size & ~31UL) {		if(~(tmp = *(p++)))			goto found_middle;		result += 32;		size -= 32;	}	if(!size)		return result;	tmp = *p;found_first:	/* tmp is little endian, so we would have to swab the shift,	 * see above. But then we have to swab tmp below for ffz, so	 * we might as well do this here.	 */	return result + ffz(__swab32(tmp) | (~0UL << size));found_middle:	return result + ffz(__swab32(tmp));}#else /* !(__MIPSEB__) *//* Native ext2 byte ordering, just collapse using defines. */#define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))#define ext2_test_bit(nr, addr) test_bit((nr), (addr))#define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))#define ext2_find_next_zero_bit(addr, size, offset) \                find_next_zero_bit((addr), (size), (offset)) #endif /* !(__MIPSEB__) *//* * Bitmap functions for the minix filesystem. * FIXME: These assume that Minix uses the native byte/bitorder. * This limits the Minix filesystem's value for data exchange very much. */#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)#define minix_set_bit(nr,addr) set_bit(nr,addr)#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)#define minix_test_bit(nr,addr) test_bit(nr,addr)#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)#endif /* _ASM_BITOPS_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -