⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pgtable.h

📁 Linux内核源代码 为压缩文件 是<<Linux内核>>一书中的源代码
💻 H
📖 第 1 页 / 共 2 页
字号:
/* * This file is subject to the terms and conditions of the GNU General Public * License.  See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994 - 1999 by Ralf Baechle at alii * Copyright (C) 1999 Silicon Graphics, Inc. */#ifndef _ASM_PGTABLE_H#define _ASM_PGTABLE_H#include <asm/addrspace.h>#include <asm/page.h>#ifndef _LANGUAGE_ASSEMBLY#include <linux/linkage.h>#include <asm/cachectl.h>#include <linux/config.h>/* Cache flushing: * *  - flush_cache_all() flushes entire cache *  - flush_cache_mm(mm) flushes the specified mm context's cache lines *  - flush_cache_page(mm, vmaddr) flushes a single page *  - flush_cache_range(mm, start, end) flushes a range of pages *  - flush_page_to_ram(page) write back kernel page to ram */extern void (*_flush_cache_all)(void);extern void (*_flush_cache_mm)(struct mm_struct *mm);extern void (*_flush_cache_range)(struct mm_struct *mm, unsigned long start,				 unsigned long end);extern void (*_flush_cache_page)(struct vm_area_struct *vma, unsigned long page);extern void (*_flush_cache_sigtramp)(unsigned long addr);extern void (*_flush_page_to_ram)(struct page * page);#define flush_dcache_page(page)			do { } while (0)#define flush_cache_all()		_flush_cache_all()#define flush_cache_mm(mm)		_flush_cache_mm(mm)#define flush_cache_range(mm,start,end)	_flush_cache_range(mm,start,end)#define flush_cache_page(vma,page)	_flush_cache_page(vma, page)#define flush_cache_sigtramp(addr)	_flush_cache_sigtramp(addr)#define flush_page_to_ram(page)		_flush_page_to_ram(page)#define flush_icache_range(start, end)	flush_cache_all()#define flush_icache_page(vma, page)					\do {									\	unsigned long addr;						\	addr = (unsigned long) page_address(page);			\	_flush_cache_page(vma, addr);					\} while (0)/* * - add_wired_entry() add a fixed TLB entry, and move wired register */extern void add_wired_entry(unsigned long entrylo0, unsigned long entrylo1,			       unsigned long entryhi, unsigned long pagemask);/* Basically we have the same two-level (which is the logical three level * Linux page table layout folded) page tables as the i386.  Some day * when we have proper page coloring support we can have a 1% quicker * tlb refill handling mechanism, but for now it is a bit slower but * works even with the cache aliasing problem the R4k and above have. */#endif /* !defined (_LANGUAGE_ASSEMBLY) *//* PMD_SHIFT determines the size of the area a second-level page table can map */#define PMD_SHIFT	22#define PMD_SIZE	(1UL << PMD_SHIFT)#define PMD_MASK	(~(PMD_SIZE-1))/* PGDIR_SHIFT determines what a third-level page table entry can map */#define PGDIR_SHIFT	22#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)#define PGDIR_MASK	(~(PGDIR_SIZE-1))/* Entries per page directory level: we use two-level, so * we don't really have any PMD directory physically. */#define PTRS_PER_PTE	1024#define PTRS_PER_PMD	1#define PTRS_PER_PGD	1024#define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)#define FIRST_USER_PGD_NR	0#define VMALLOC_START     KSEG2#define VMALLOC_VMADDR(x) ((unsigned long)(x))#define VMALLOC_END       KSEG3/* Note that we shift the lower 32bits of each EntryLo[01] entry * 6 bits to the left. That way we can convert the PFN into the * physical address by a single 'and' operation and gain 6 additional * bits for storing information which isn't present in a normal * MIPS page table. * * Similar to the Alpha port, we need to keep track of the ref * and mod bits in software.  We have a software "yeah you can read * from this page" bit, and a hardware one which actually lets the * process read from the page.  On the same token we have a software * writable bit and the real hardware one which actually lets the * process write to the page, this keeps a mod bit via the hardware * dirty bit. * * Certain revisions of the R4000 and R5000 have a bug where if a * certain sequence occurs in the last 3 instructions of an executable * page, and the following page is not mapped, the cpu can do * unpredictable things.  The code (when it is written) to deal with * this problem will be in the update_mmu_cache() code for the r4k. */#define _PAGE_PRESENT               (1<<0)  /* implemented in software */#define _PAGE_READ                  (1<<1)  /* implemented in software */#define _PAGE_WRITE                 (1<<2)  /* implemented in software */#define _PAGE_ACCESSED              (1<<3)  /* implemented in software */#define _PAGE_MODIFIED              (1<<4)  /* implemented in software */#if defined(CONFIG_CPU_R3000)#define _PAGE_GLOBAL                (1<<8)#define _PAGE_VALID                 (1<<9)#define _PAGE_SILENT_READ           (1<<9)  /* synonym                 */#define _PAGE_DIRTY                 (1<<10) /* The MIPS dirty bit      */#define _PAGE_SILENT_WRITE          (1<<10)#define _CACHE_UNCACHED             (1<<11) /* R4[0246]00              */#define _CACHE_MASK                 (1<<11)#define _CACHE_CACHABLE_NONCOHERENT 0#else #define _PAGE_R4KBUG                (1<<5)  /* workaround for r4k bug  */#define _PAGE_GLOBAL                (1<<6)#define _PAGE_VALID                 (1<<7)#define _PAGE_SILENT_READ           (1<<7)  /* synonym                 */#define _PAGE_DIRTY                 (1<<8)  /* The MIPS dirty bit      */#define _PAGE_SILENT_WRITE          (1<<8)#define _CACHE_CACHABLE_NO_WA       (0<<9)  /* R4600 only              */#define _CACHE_CACHABLE_WA          (1<<9)  /* R4600 only              */#define _CACHE_UNCACHED             (2<<9)  /* R4[0246]00              */#define _CACHE_CACHABLE_NONCOHERENT (3<<9)  /* R4[0246]00              */#define _CACHE_CACHABLE_CE          (4<<9)  /* R4[04]00 only           */#define _CACHE_CACHABLE_COW         (5<<9)  /* R4[04]00 only           */#define _CACHE_CACHABLE_CUW         (6<<9)  /* R4[04]00 only           */#define _CACHE_CACHABLE_ACCELERATED (7<<9)  /* R10000 only             */#define _CACHE_MASK                 (7<<9)#endif#define __READABLE	(_PAGE_READ | _PAGE_SILENT_READ | _PAGE_ACCESSED)#define __WRITEABLE	(_PAGE_WRITE | _PAGE_SILENT_WRITE | _PAGE_MODIFIED)#define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_MODIFIED | _CACHE_MASK)#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _CACHE_CACHABLE_NONCOHERENT)#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \			_CACHE_CACHABLE_NONCOHERENT)#define PAGE_COPY       __pgprot(_PAGE_PRESENT | _PAGE_READ | \			_CACHE_CACHABLE_NONCOHERENT)#define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_READ | \			_CACHE_CACHABLE_NONCOHERENT)#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \			_CACHE_CACHABLE_NONCOHERENT)#define PAGE_USERIO     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \			_CACHE_UNCACHED)#define PAGE_KERNEL_UNCACHED __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \			_CACHE_UNCACHED)/* * MIPS can't do page protection for execute, and considers that the same like * read. Also, write permissions imply read permissions. This is the closest * we can get by reasonable means.. */#define __P000	PAGE_NONE#define __P001	PAGE_READONLY#define __P010	PAGE_COPY#define __P011	PAGE_COPY#define __P100	PAGE_READONLY#define __P101	PAGE_READONLY#define __P110	PAGE_COPY#define __P111	PAGE_COPY#define __S000	PAGE_NONE#define __S001	PAGE_READONLY#define __S010	PAGE_SHARED#define __S011	PAGE_SHARED#define __S100	PAGE_READONLY#define __S101	PAGE_READONLY#define __S110	PAGE_SHARED#define __S111	PAGE_SHARED#if !defined (_LANGUAGE_ASSEMBLY)#define pte_ERROR(e) \	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))#define pmd_ERROR(e) \	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))#define pgd_ERROR(e) \	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))/* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */extern pte_t __bad_page(void);extern pte_t *__bad_pagetable(void);extern unsigned long empty_zero_page;extern unsigned long zero_page_mask;#define BAD_PAGETABLE __bad_pagetable()#define BAD_PAGE __bad_page()#define ZERO_PAGE(vaddr) \	(virt_to_page(empty_zero_page + (((unsigned long)(vaddr)) & zero_page_mask)))/* number of bits that fit into a memory pointer */#define BITS_PER_PTR			(8*sizeof(unsigned long))/* to align the pointer to a pointer address */#define PTR_MASK			(~(sizeof(void*)-1))/* * sizeof(void*) == (1 << SIZEOF_PTR_LOG2) */#define SIZEOF_PTR_LOG2			2/* to find an entry in a page-table */#define PAGE_PTR(address) \((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)extern void load_pgd(unsigned long pg_dir);extern pmd_t invalid_pte_table[PAGE_SIZE/sizeof(pmd_t)];/* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */extern inline unsigned long pmd_page(pmd_t pmd){	return pmd_val(pmd);}extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep){	pmd_val(*pmdp) = (((unsigned long) ptep) & PAGE_MASK);}extern inline int pte_none(pte_t pte)    { return !pte_val(pte); }extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; }/* Certain architectures need to do special things when pte's * within a page table are directly modified.  Thus, the following * hook is made available. */extern inline void set_pte(pte_t *ptep, pte_t pteval){	*ptep = pteval;}extern inline void pte_clear(pte_t *ptep){	set_pte(ptep, __pte(0));}/* * Empty pgd/pmd entries point to the invalid_pte_table. */extern inline int pmd_none(pmd_t pmd){	return pmd_val(pmd) == (unsigned long) invalid_pte_table;}extern inline int pmd_bad(pmd_t pmd){	return ((pmd_page(pmd) > (unsigned long) high_memory) ||	        (pmd_page(pmd) < PAGE_OFFSET));}extern inline int pmd_present(pmd_t pmd){	return pmd_val(pmd);}extern inline void pmd_clear(pmd_t *pmdp){	pmd_val(*pmdp) = ((unsigned long) invalid_pte_table);}/* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */extern inline int pgd_none(pgd_t pgd)		{ return 0; }extern inline int pgd_bad(pgd_t pgd)		{ return 0; }extern inline int pgd_present(pgd_t pgd)	{ return 1; }extern inline void pgd_clear(pgd_t *pgdp)	{ }/* * Permanent address of a page.  On MIPS64 we never have highmem, so this * is simple. */#define page_address(page)	((page)->virtual)#define pte_page(x)		(mem_map+(unsigned long)((pte_val(x) >> PAGE_SHIFT)))/* * The following only work if pte_present() is true. * Undefined behaviour if not.. */extern inline int pte_read(pte_t pte)	{ return pte_val(pte) & _PAGE_READ; }extern inline int pte_write(pte_t pte)	{ return pte_val(pte) & _PAGE_WRITE; }extern inline int pte_dirty(pte_t pte)	{ return pte_val(pte) & _PAGE_MODIFIED; }extern inline int pte_young(pte_t pte)	{ return pte_val(pte) & _PAGE_ACCESSED; }extern inline pte_t pte_wrprotect(pte_t pte){	pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);	return pte;}extern inline pte_t pte_rdprotect(pte_t pte){	pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ);	return pte;}extern inline pte_t pte_mkclean(pte_t pte){	pte_val(pte) &= ~(_PAGE_MODIFIED|_PAGE_SILENT_WRITE);	return pte;}extern inline pte_t pte_mkold(pte_t pte){	pte_val(pte) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ);	return pte;}extern inline pte_t pte_mkwrite(pte_t pte){	pte_val(pte) |= _PAGE_WRITE;	if (pte_val(pte) & _PAGE_MODIFIED)		pte_val(pte) |= _PAGE_SILENT_WRITE;	return pte;}extern inline pte_t pte_mkread(pte_t pte){	pte_val(pte) |= _PAGE_READ;	if (pte_val(pte) & _PAGE_ACCESSED)		pte_val(pte) |= _PAGE_SILENT_READ;	return pte;}extern inline pte_t pte_mkdirty(pte_t pte)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -