⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bitops.h

📁 Linux内核源代码 为压缩文件 是<<Linux内核>>一书中的源代码
💻 H
字号:
/* * This file is subject to the terms and conditions of the GNU General Public * License.  See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (c) 1994, 95, 96, 97, 98, 99, 2000  Ralf Baechle * Copyright (c) 1999, 2000  Silicon Graphics, Inc. */#ifndef _ASM_BITOPS_H#define _ASM_BITOPS_H#include <linux/types.h>#include <linux/byteorder/swab.h>		/* sigh ... */#ifndef __KERNEL__#error "Don't do this, sucker ..."#endif#include <asm/system.h>#include <asm/sgidefs.h>#include <asm/mipsregs.h>/* * clear_bit() doesn't provide any barrier for the compiler. */#define smp_mb__before_clear_bit()	barrier()#define smp_mb__after_clear_bit()	barrier()/* * These functions for MIPS ISA > 1 are interrupt and SMP proof and * interrupt friendly */extern __inline__ voidset_bit(unsigned long nr, volatile void *addr){	unsigned long *m = ((unsigned long *) addr) + (nr >> 6);	unsigned long temp;	__asm__ __volatile__(		"1:\tlld\t%0, %1\t\t# set_bit\n\t"		"or\t%0, %2\n\t"		"scd\t%0, %1\n\t"		"beqz\t%0, 1b"		: "=&r" (temp), "=m" (*m)		: "ir" (1UL << (nr & 0x3f)), "m" (*m)		: "memory");}/* WARNING: non atomic and it can be reordered! */extern __inline__ void __set_bit(int nr, volatile void * addr){	unsigned long * m = ((unsigned long *) addr) + (nr >> 6);	*m |= 1UL << (nr & 0x3f);}extern __inline__ voidclear_bit(unsigned long nr, volatile void *addr){	unsigned long *m = ((unsigned long *) addr) + (nr >> 6);	unsigned long temp;	__asm__ __volatile__(		"1:\tlld\t%0, %1\t\t# clear_bit\n\t"		"and\t%0, %2\n\t"		"scd\t%0, %1\n\t"		"beqz\t%0, 1b\n\t"		: "=&r" (temp), "=m" (*m)		: "ir" (~(1UL << (nr & 0x3f))), "m" (*m));}extern __inline__ voidchange_bit(unsigned long nr, volatile void *addr){	unsigned long *m = ((unsigned long *) addr) + (nr >> 6);	unsigned long temp;	__asm__ __volatile__(		"1:\tlld\t%0, %1\t\t# change_bit\n\t"		"xor\t%0, %2\n\t"		"scd\t%0, %1\n\t"		"beqz\t%0, 1b"		:"=&r" (temp), "=m" (*m)		:"ir" (1UL << (nr & 0x3f)), "m" (*m));}extern __inline__ unsigned longtest_and_set_bit(unsigned long nr, volatile void *addr){	unsigned long *m = ((unsigned long *) addr) + (nr >> 6);	unsigned long temp, res;	__asm__ __volatile__(		".set\tnoreorder\t\t# test_and_set_bit\n"		"1:\tlld\t%0, %1\n\t"		"or\t%2, %0, %3\n\t"		"scd\t%2, %1\n\t"		"beqz\t%2, 1b\n\t"		" and\t%2, %0, %3\n\t"		".set\treorder"		: "=&r" (temp), "=m" (*m), "=&r" (res)		: "r" (1UL << (nr & 0x3f)), "m" (*m)		: "memory");	return res != 0;}extern __inline__ int __test_and_set_bit(int nr, volatile void * addr){	int mask, retval;	volatile long *a = addr;	a += nr >> 6;	mask = 1 << (nr & 0x3f);	retval = (mask & *a) != 0;	*a |= mask;	return retval;}extern __inline__ unsigned longtest_and_clear_bit(unsigned long nr, volatile void *addr){	unsigned long *m = ((unsigned long *) addr) + (nr >> 6);	unsigned long temp, res;	__asm__ __volatile__(		".set\tnoreorder\t\t# test_and_clear_bit\n"		"1:\tlld\t%0, %1\n\t"		"or\t%2, %0, %3\n\t"		"xor\t%2, %3\n\t"		"scd\t%2, %1\n\t"		"beqz\t%2, 1b\n\t"		" and\t%2, %0, %3\n\t"		".set\treorder"		: "=&r" (temp), "=m" (*m), "=&r" (res)		: "r" (1UL << (nr & 0x3f)), "m" (*m)		: "memory");	return res != 0;}extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr){	int     mask, retval;	volatile long    *a = addr;	a += nr >> 6;	mask = 1 << (nr & 0x3f);	retval = (mask & *a) != 0;	*a &= ~mask;	return retval;}extern __inline__ unsigned longtest_and_change_bit(unsigned long nr, volatile void *addr){	unsigned long *m = ((unsigned long *) addr) + (nr >> 6);	unsigned long temp, res;	__asm__ __volatile__(		".set\tnoreorder\t\t# test_and_change_bit\n"		"1:\tlld\t%0, %1\n\t"		"xor\t%2, %0, %3\n\t"		"scd\t%2, %1\n\t"		"beqz\t%2, 1b\n\t"		" and\t%2, %0, %3\n\t"		".set\treorder"		: "=&r" (temp), "=m" (*m), "=&r" (res)		: "r" (1UL << (nr & 0x3f)), "m" (*m)		: "memory");	return res != 0;}extern __inline__ unsigned longtest_bit(int nr, volatile void * addr){	return 1UL & (((const long *) addr)[nr >> 6] >> (nr & 0x3f));}#ifndef __MIPSEB__/* Little endian versions. */extern __inline__ intfind_first_zero_bit (void *addr, unsigned size){	unsigned long dummy;	int res;	if (!size)		return 0;	__asm__ (".set\tnoreorder\n\t"		".set\tnoat\n"		"1:\tsubu\t$1,%6,%0\n\t"		"blez\t$1,2f\n\t"		"lw\t$1,(%5)\n\t"		"addiu\t%5,4\n\t"#if (_MIPS_ISA == _MIPS_ISA_MIPS2) || (_MIPS_ISA == _MIPS_ISA_MIPS3) || \    (_MIPS_ISA == _MIPS_ISA_MIPS4) || (_MIPS_ISA == _MIPS_ISA_MIPS5)		"beql\t%1,$1,1b\n\t"		"addiu\t%0,32\n\t"#else		"addiu\t%0,32\n\t"		"beq\t%1,$1,1b\n\t"		"nop\n\t"		"subu\t%0,32\n\t"#endif		"li\t%1,1\n"		"1:\tand\t%2,$1,%1\n\t"		"beqz\t%2,2f\n\t"		"sll\t%1,%1,1\n\t"		"bnez\t%1,1b\n\t"		"add\t%0,%0,1\n\t"		".set\tat\n\t"		".set\treorder\n"		"2:"		: "=r" (res), "=r" (dummy), "=r" (addr)		: "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff),		  "2" (addr), "r" (size)		: "$1");	return res;}extern __inline__ intfind_next_zero_bit (void * addr, int size, int offset){	unsigned int *p = ((unsigned int *) addr) + (offset >> 5);	int set = 0, bit = offset & 31, res;	unsigned long dummy;	if (bit) {		/*		 * Look for zero in first byte		 */		__asm__(".set\tnoreorder\n\t"			".set\tnoat\n"			"1:\tand\t$1,%4,%1\n\t"			"beqz\t$1,1f\n\t"			"sll\t%1,%1,1\n\t"			"bnez\t%1,1b\n\t"			"addiu\t%0,1\n\t"			".set\tat\n\t"			".set\treorder\n"			"1:"			: "=r" (set), "=r" (dummy)			: "0" (0), "1" (1 << bit), "r" (*p)			: "$1");		if (set < (32 - bit))			return set + offset;		set = 32 - bit;		p++;	}	/*	 * No zero yet, search remaining full bytes for a zero	 */	res = find_first_zero_bit(p, size - 32 * (p - (unsigned int *) addr));	return offset + set + res;}#endif /* !(__MIPSEB__) *//* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */extern __inline__ unsigned long ffz(unsigned long word){	unsigned long k;	word = ~word;	k = 63;	if (word & 0x00000000ffffffffUL) { k -= 32; word <<= 32; }	if (word & 0x0000ffff00000000UL) { k -= 16; word <<= 16; }	if (word & 0x00ff000000000000UL) { k -= 8;  word <<= 8;  }	if (word & 0x0f00000000000000UL) { k -= 4;  word <<= 4;  }	if (word & 0x3000000000000000UL) { k -= 2;  word <<= 2;  }	if (word & 0x4000000000000000UL) { k -= 1; }	return k;}#ifdef __KERNEL__/* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */#define ffs(x) generic_ffs(x)/* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */#define hweight32(x) generic_hweight32(x)#define hweight16(x) generic_hweight16(x)#define hweight8(x)  generic_hweight8(x)#endif /* __KERNEL__ */#ifdef __MIPSEB__/* * find_next_zero_bit() finds the first zero bit in a bit string of length * 'size' bits, starting the search at bit 'offset'. This is largely based * on Linus's ALPHA routines, which are pretty portable BTW. */extern __inline__ unsigned longfind_next_zero_bit(void *addr, unsigned long size, unsigned long offset){	unsigned long *p = ((unsigned long *) addr) + (offset >> 6);	unsigned long result = offset & ~63UL;	unsigned long tmp;	if (offset >= size)		return size;	size -= result;	offset &= 63UL;	if (offset) {		tmp = *(p++);		tmp |= ~0UL >> (64-offset);		if (size < 64)			goto found_first;		if (~tmp)			goto found_middle;		size -= 64;		result += 64;	}	while (size & ~63UL) {		if (~(tmp = *(p++)))			goto found_middle;		result += 64;		size -= 64;	}	if (!size)		return result;	tmp = *p;found_first:	tmp |= ~0UL << size;found_middle:	return result + ffz(tmp);}#define find_first_zero_bit(addr, size) \        find_next_zero_bit((addr), (size), 0)#endif /* (__MIPSEB__) */#ifdef __KERNEL__/* Now for the ext2 filesystem bit operations and helper routines. */#ifdef __MIPSEB__extern inline intext2_set_bit(int nr,void * addr){	int		mask, retval, flags;	unsigned char	*ADDR = (unsigned char *) addr;	ADDR += nr >> 3;	mask = 1 << (nr & 0x07);	save_and_cli(flags);	retval = (mask & *ADDR) != 0;	*ADDR |= mask;	restore_flags(flags);	return retval;}extern inline intext2_clear_bit(int nr, void * addr){	int		mask, retval, flags;	unsigned char	*ADDR = (unsigned char *) addr;	ADDR += nr >> 3;	mask = 1 << (nr & 0x07);	save_and_cli(flags);	retval = (mask & *ADDR) != 0;	*ADDR &= ~mask;	restore_flags(flags);	return retval;}extern inline intext2_test_bit(int nr, const void * addr){	int			mask;	const unsigned char	*ADDR = (const unsigned char *) addr;	ADDR += nr >> 3;	mask = 1 << (nr & 0x07);	return ((mask & *ADDR) != 0);}#define ext2_find_first_zero_bit(addr, size) \        ext2_find_next_zero_bit((addr), (size), 0)extern inline unsigned intext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset){	unsigned int *p = ((unsigned int *) addr) + (offset >> 5);	unsigned int result = offset & ~31UL;	unsigned int tmp;	if (offset >= size)		return size;	size -= result;	offset &= 31UL;	if(offset) {		/* We hold the little endian value in tmp, but then the		 * shift is illegal. So we could keep a big endian value		 * in tmp, like this:		 *		 * tmp = __swab32(*(p++));		 * tmp |= ~0UL >> (32-offset);		 *		 * but this would decrease preformance, so we change the		 * shift:		 */		tmp = *(p++);		tmp |= __swab32(~0UL >> (32-offset));		if(size < 32)			goto found_first;		if(~tmp)			goto found_middle;		size -= 32;		result += 32;	}	while(size & ~31UL) {		if(~(tmp = *(p++)))			goto found_middle;		result += 32;		size -= 32;	}	if(!size)		return result;	tmp = *p;found_first:	/* tmp is little endian, so we would have to swab the shift,	 * see above. But then we have to swab tmp below for ffz, so	 * we might as well do this here.	 */	return result + ffz(__swab32(tmp) | (~0UL << size));found_middle:	return result + ffz(__swab32(tmp));}#else /* !(__MIPSEB__) *//* Native ext2 byte ordering, just collapse using defines. */#define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))#define ext2_test_bit(nr, addr) test_bit((nr), (addr))#define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))#define ext2_find_next_zero_bit(addr, size, offset) \                find_next_zero_bit((addr), (size), (offset)) #endif /* !(__MIPSEB__) *//* * Bitmap functions for the minix filesystem. * FIXME: These assume that Minix uses the native byte/bitorder. * This limits the Minix filesystem's value for data exchange very much. */#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)#define minix_set_bit(nr,addr) set_bit(nr,addr)#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)#define minix_test_bit(nr,addr) test_bit(nr,addr)#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)#endif /* __KERNEL__ */#endif /* _ASM_BITOPS_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -