📄 mem.c
字号:
/* * linux/drivers/char/mem.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Added devfs support. * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu> * Shared /dev/zero mmaping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com> */#include <linux/config.h>#include <linux/mm.h>#include <linux/miscdevice.h>#include <linux/tpqic02.h>#include <linux/ftape.h>#include <linux/malloc.h>#include <linux/vmalloc.h>#include <linux/mman.h>#include <linux/random.h>#include <linux/init.h>#include <linux/raw.h>#include <linux/capability.h>#include <asm/uaccess.h>#include <asm/io.h>#include <asm/pgalloc.h>#ifdef CONFIG_I2Cextern int i2c_init_all(void);#endif#ifdef CONFIG_ISDNint isdn_init(void);#endif#ifdef CONFIG_VIDEO_DEVextern int videodev_init(void);#endif#ifdef CONFIG_FBextern void fbmem_init(void);#endif#ifdef CONFIG_PROM_CONSOLEextern void prom_con_init(void);#endif#ifdef CONFIG_MDA_CONSOLEextern void mda_console_init(void);#endif#if defined(CONFIG_ADB)extern void adbdev_init(void);#endif static ssize_t do_write_mem(struct file * file, void *p, unsigned long realp, const char * buf, size_t count, loff_t *ppos){ ssize_t written; written = 0;#if defined(__sparc__) || defined(__mc68000__) /* we don't have page 0 mapped on sparc and m68k.. */ if (realp < PAGE_SIZE) { unsigned long sz = PAGE_SIZE-realp; if (sz > count) sz = count; /* Hmm. Do something? */ buf+=sz; p+=sz; count-=sz; written+=sz; }#endif if (copy_from_user(p, buf, count)) return -EFAULT; written += count; *ppos += written; return written;}/* * This funcion reads the *physical* memory. The f_pos points directly to the * memory location. */static ssize_t read_mem(struct file * file, char * buf, size_t count, loff_t *ppos){ unsigned long p = *ppos; unsigned long end_mem; ssize_t read; end_mem = __pa(high_memory); if (p >= end_mem) return 0; if (count > end_mem - p) count = end_mem - p; read = 0;#if defined(__sparc__) || defined(__mc68000__) /* we don't have page 0 mapped on sparc and m68k.. */ if (p < PAGE_SIZE) { unsigned long sz = PAGE_SIZE-p; if (sz > count) sz = count; if (sz > 0) { if (clear_user(buf, sz)) return -EFAULT; buf += sz; p += sz; count -= sz; read += sz; } }#endif if (copy_to_user(buf, __va(p), count)) return -EFAULT; read += count; *ppos += read; return read;}static ssize_t write_mem(struct file * file, const char * buf, size_t count, loff_t *ppos){ unsigned long p = *ppos; unsigned long end_mem; end_mem = __pa(high_memory); if (p >= end_mem) return 0; if (count > end_mem - p) count = end_mem - p; return do_write_mem(file, __va(p), p, buf, count, ppos);}#ifndef pgprot_noncached/* * This should probably be per-architecture in <asm/pgtable.h> */static inline pgprot_t pgprot_noncached(pgprot_t _prot){ unsigned long prot = pgprot_val(_prot);#if defined(__i386__) /* On PPro and successors, PCD alone doesn't always mean uncached because of interactions with the MTRRs. PCD | PWT means definitely uncached. */ if (boot_cpu_data.x86 > 3) prot |= _PAGE_PCD | _PAGE_PWT;#elif defined(__powerpc__) prot |= _PAGE_NO_CACHE | _PAGE_GUARDED;#elif defined(__mc68000__)#ifdef SUN3_PAGE_NOCACHE if (MMU_IS_SUN3) prot |= SUN3_PAGE_NOCACHE; else#endif if (MMU_IS_851 || MMU_IS_030) prot |= _PAGE_NOCACHE030; /* Use no-cache mode, serialized */ else if (MMU_IS_040 || MMU_IS_060) prot = (prot & _CACHEMASK040) | _PAGE_NOCACHE_S;#elif defined(__mips__) prot = (prot & ~_CACHE_MASK) | _CACHE_UNCACHED;#elif defined(__arm__) && defined(CONFIG_CPU_32) /* Turn off caching for all I/O areas */ prot &= ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE);#endif return __pgprot(prot);}#endif /* !pgprot_noncached *//* * Architectures vary in how they handle caching for addresses * outside of main memory. */static inline int noncached_address(unsigned long addr){#if defined(__i386__) /* * On the PPro and successors, the MTRRs are used to set * memory types for physical addresses outside main memory, * so blindly setting PCD or PWT on those pages is wrong. * For Pentiums and earlier, the surround logic should disable * caching for the high addresses through the KEN pin, but * we maintain the tradition of paranoia in this code. */ return !( test_bit(X86_FEATURE_MTRR, &boot_cpu_data.x86_capability) || test_bit(X86_FEATURE_K6_MTRR, &boot_cpu_data.x86_capability) || test_bit(X86_FEATURE_CYRIX_ARR, &boot_cpu_data.x86_capability) || test_bit(X86_FEATURE_CENTAUR_MCR, &boot_cpu_data.x86_capability) ) && addr >= __pa(high_memory);#else return addr >= __pa(high_memory);#endif}static int mmap_mem(struct file * file, struct vm_area_struct * vma){ unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; /* * Accessing memory above the top the kernel knows about or * through a file pointer that was marked O_SYNC will be * done non-cached. */ if (noncached_address(offset) || (file->f_flags & O_SYNC)) vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); /* Don't try to swap out physical pages.. */ vma->vm_flags |= VM_RESERVED; /* * Don't dump addresses that are not real memory to a core file. */ if (offset >= __pa(high_memory) || (file->f_flags & O_SYNC)) vma->vm_flags |= VM_IO; if (remap_page_range(vma->vm_start, offset, vma->vm_end-vma->vm_start, vma->vm_page_prot)) return -EAGAIN; return 0;}/* * This function reads the *virtual* memory as seen by the kernel. */static ssize_t read_kmem(struct file *file, char *buf, size_t count, loff_t *ppos){ unsigned long p = *ppos; ssize_t read = 0; ssize_t virtr = 0; char * kbuf; /* k-addr because vread() takes vmlist_lock rwlock */ if (p < (unsigned long) high_memory) { read = count; if (count > (unsigned long) high_memory - p) read = (unsigned long) high_memory - p;#if defined(__sparc__) || defined(__mc68000__) /* we don't have page 0 mapped on sparc and m68k.. */ if (p < PAGE_SIZE && read > 0) { size_t tmp = PAGE_SIZE - p; if (tmp > read) tmp = read; if (clear_user(buf, tmp)) return -EFAULT; buf += tmp; p += tmp; read -= tmp; count -= tmp; }#endif if (copy_to_user(buf, (char *)p, read)) return -EFAULT; p += read; buf += read; count -= read; } if (count > 0) { kbuf = (char *)__get_free_page(GFP_KERNEL); if (!kbuf) return -ENOMEM; while (count > 0) { int len = count; if (len > PAGE_SIZE) len = PAGE_SIZE; len = vread(kbuf, (char *)p, len); if (len && copy_to_user(buf, kbuf, len)) { free_page((unsigned long)kbuf); return -EFAULT; } count -= len; buf += len; virtr += len; p += len; } free_page((unsigned long)kbuf); } *ppos = p; return virtr + read;}/* * This function writes to the *virtual* memory as seen by the kernel. */static ssize_t write_kmem(struct file * file, const char * buf, size_t count, loff_t *ppos){ unsigned long p = *ppos; if (p >= (unsigned long) high_memory) return 0; if (count > (unsigned long) high_memory - p) count = (unsigned long) high_memory - p; return do_write_mem(file, (void*)p, p, buf, count, ppos);}#if !defined(__mc68000__)static ssize_t read_port(struct file * file, char * buf, size_t count, loff_t *ppos){ unsigned long i = *ppos; char *tmp = buf; if (verify_area(VERIFY_WRITE,buf,count)) return -EFAULT; while (count-- > 0 && i < 65536) { if (__put_user(inb(i),tmp) < 0) return -EFAULT; i++; tmp++; } *ppos = i; return tmp-buf;}static ssize_t write_port(struct file * file, const char * buf, size_t count, loff_t *ppos){ unsigned long i = *ppos; const char * tmp = buf; if (verify_area(VERIFY_READ,buf,count)) return -EFAULT; while (count-- > 0 && i < 65536) { char c; if (__get_user(c, tmp)) return -EFAULT; outb(c,i); i++; tmp++; } *ppos = i; return tmp-buf;}#endifstatic ssize_t read_null(struct file * file, char * buf, size_t count, loff_t *ppos){ return 0;}static ssize_t write_null(struct file * file, const char * buf, size_t count, loff_t *ppos){ return count;}/* * For fun, we are using the MMU for this. */static inline size_t read_zero_pagealigned(char * buf, size_t size){ struct mm_struct *mm; struct vm_area_struct * vma; unsigned long addr=(unsigned long)buf; mm = current->mm; /* Oops, this was forgotten before. -ben */ down(&mm->mmap_sem); /* For private mappings, just map in zero pages. */ for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { unsigned long count; if (vma->vm_start > addr || (vma->vm_flags & VM_WRITE) == 0) goto out_up; if (vma->vm_flags & VM_SHARED) break; count = vma->vm_end - addr; if (count > size) count = size; flush_cache_range(mm, addr, addr + count); zap_page_range(mm, addr, count); zeromap_page_range(addr, count, PAGE_COPY); flush_tlb_range(mm, addr, addr + count); size -= count; buf += count; addr += count; if (size == 0) goto out_up; } up(&mm->mmap_sem); /* The shared case is hard. Let's do the conventional zeroing. */ do { unsigned long unwritten = clear_user(buf, PAGE_SIZE); if (unwritten) return size + unwritten - PAGE_SIZE; if (current->need_resched) schedule(); buf += PAGE_SIZE; size -= PAGE_SIZE; } while (size); return size;out_up: up(&mm->mmap_sem); return size;}static ssize_t read_zero(struct file * file, char * buf, size_t count, loff_t *ppos){ unsigned long left, unwritten, written = 0; if (!count) return 0; if (!access_ok(VERIFY_WRITE, buf, count)) return -EFAULT; left = count; /* do we want to be clever? Arbitrary cut-off */ if (count >= PAGE_SIZE*4) { unsigned long partial; /* How much left of the page? */ partial = (PAGE_SIZE-1) & -(unsigned long) buf; unwritten = clear_user(buf, partial); written = partial - unwritten; if (unwritten) goto out; left -= partial; buf += partial; unwritten = read_zero_pagealigned(buf, left & PAGE_MASK); written += (left & PAGE_MASK) - unwritten; if (unwritten) goto out; buf += left & PAGE_MASK; left &= ~PAGE_MASK; } unwritten = clear_user(buf, left); written += left - unwritten;out: return written ? written : -EFAULT;}static int mmap_zero(struct file * file, struct vm_area_struct * vma){ if (vma->vm_flags & VM_SHARED) return shmem_zero_setup(vma); if (zeromap_page_range(vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot)) return -EAGAIN; return 0;}static ssize_t write_full(struct file * file, const char * buf, size_t count, loff_t *ppos){ return -ENOSPC;}/* * Special lseek() function for /dev/null and /dev/zero. Most notably, you * can fopen() both devices with "a" now. This was previously impossible. * -- SRB. */static loff_t null_lseek(struct file * file, loff_t offset, int orig){ return file->f_pos = 0;}/* * The memory devices use the full 32/64 bits of the offset, and so we cannot * check against negative addresses: they are ok. The return value is weird, * though, in that case (0). * * also note that seeking relative to the "end of file" isn't supported: * it has no meaning, so it returns -EINVAL. */static loff_t memory_lseek(struct file * file, loff_t offset, int orig){ switch (orig) { case 0: file->f_pos = offset; return file->f_pos; case 1: file->f_pos += offset; return file->f_pos; default: return -EINVAL; }}static int open_port(struct inode * inode, struct file * filp){ return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;}#define mmap_kmem mmap_mem#define zero_lseek null_lseek#define full_lseek null_lseek#define write_zero write_null#define read_full read_zero#define open_mem open_port#define open_kmem open_memstatic struct file_operations mem_fops = { llseek: memory_lseek, read: read_mem, write: write_mem, mmap: mmap_mem, open: open_mem,};static struct file_operations kmem_fops = { llseek: memory_lseek, read: read_kmem, write: write_kmem, mmap: mmap_kmem, open: open_kmem,};static struct file_operations null_fops = { llseek: null_lseek, read: read_null, write: write_null,};#if !defined(__mc68000__)static struct file_operations port_fops = { llseek: memory_lseek, read: read_port, write: write_port, open: open_port,};#endifstatic struct file_operations zero_fops = { llseek: zero_lseek, read: read_zero, write: write_zero, mmap: mmap_zero,};static struct file_operations full_fops = { llseek: full_lseek, read: read_full, write: write_full,};static int memory_open(struct inode * inode, struct file * filp){ switch (MINOR(inode->i_rdev)) { case 1: filp->f_op = &mem_fops; break; case 2: filp->f_op = &kmem_fops; break; case 3: filp->f_op = &null_fops; break;#if !defined(__mc68000__) case 4: filp->f_op = &port_fops; break;#endif case 5: filp->f_op = &zero_fops; break; case 7: filp->f_op = &full_fops; break; case 8: filp->f_op = &random_fops; break; case 9: filp->f_op = &urandom_fops; break; default: return -ENXIO; } if (filp->f_op && filp->f_op->open) return filp->f_op->open(inode,filp); return 0;}void __init memory_devfs_register (void){ /* These are never unregistered */ static const struct { unsigned short minor; char *name; umode_t mode; struct file_operations *fops; } list[] = { /* list of minor devices */ {1, "mem", S_IRUSR | S_IWUSR | S_IRGRP, &mem_fops}, {2, "kmem", S_IRUSR | S_IWUSR | S_IRGRP, &kmem_fops}, {3, "null", S_IRUGO | S_IWUGO, &null_fops}, {4, "port", S_IRUSR | S_IWUSR | S_IRGRP, &port_fops}, {5, "zero", S_IRUGO | S_IWUGO, &zero_fops}, {7, "full", S_IRUGO | S_IWUGO, &full_fops}, {8, "random", S_IRUGO | S_IWUSR, &random_fops}, {9, "urandom", S_IRUGO | S_IWUSR, &urandom_fops} }; int i; for (i=0; i<(sizeof(list)/sizeof(*list)); i++) devfs_register (NULL, list[i].name, DEVFS_FL_NONE, MEM_MAJOR, list[i].minor, list[i].mode | S_IFCHR, list[i].fops, NULL);}static struct file_operations memory_fops = { open: memory_open, /* just a selector for the real open */};int __init chr_dev_init(void){ if (devfs_register_chrdev(MEM_MAJOR,"mem",&memory_fops)) printk("unable to get major %d for memory devs\n", MEM_MAJOR); memory_devfs_register(); rand_initialize(); raw_init();#ifdef CONFIG_I2C i2c_init_all();#endif#if defined (CONFIG_FB) fbmem_init();#endif#if defined (CONFIG_PROM_CONSOLE) prom_con_init();#endif#if defined (CONFIG_MDA_CONSOLE) mda_console_init();#endif tty_init();#ifdef CONFIG_PRINTER lp_init();#endif#ifdef CONFIG_M68K_PRINTER lp_m68k_init();#endif misc_init();#if CONFIG_QIC02_TAPE qic02_tape_init();#endif#if CONFIG_ISDN isdn_init();#endif#ifdef CONFIG_FTAPE ftape_init();#endif#if defined(CONFIG_ADB) adbdev_init();#endif#ifdef CONFIG_VIDEO_DEV videodev_init();#endif return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -