📄 i2o_core.c
字号:
if (status[0]==I2O_CMD_IN_PROGRESS) { /* * Once the reset is sent, the IOP goes into the INIT state * which is indeterminate. We need to wait until the IOP * has rebooted before we can let the system talk to * it. We read the inbound Free_List until a message is * available. If we can't read one in the given ammount of * time, we assume the IOP could not reboot properly. */ dprintk(KERN_INFO "%s: Reset in progress, waiting for reboot...\n", c->name); time = jiffies; m = I2O_POST_READ32(c); while(m == 0XFFFFFFFF) { if((jiffies-time) >= 30*HZ) { printk(KERN_ERR "%s: Timeout waiting for IOP reset.\n", c->name); return -ETIMEDOUT; } schedule(); barrier(); m = I2O_POST_READ32(c); } i2o_flush_reply(c,m); } /* If IopReset was rejected or didn't perform reset, try IopClear */ i2o_status_get(c); if (status[0] == I2O_CMD_REJECTED || c->status_block->iop_state != ADAPTER_STATE_RESET) { printk(KERN_WARNING "%s: Reset rejected, trying to clear\n",c->name); i2o_clear_controller(c); } else dprintk(KERN_INFO "%s: Reset completed.\n", c->name); /* Enable other IOPs */ for (iop = i2o_controller_chain; iop; iop = iop->next) if (iop != c) i2o_enable_controller(iop); kfree(status); return 0;}/** * i2o_status_get - get the status block for the IOP * @c: controller * * Issue a status query on the controller. This updates the * attached status_block. If the controller fails to reply or an * error occurs then a negative errno code is returned. On success * zero is returned and the status_blok is updated. */ int i2o_status_get(struct i2o_controller *c){ long time; u32 m; u32 *msg; u8 *status_block; if (c->status_block == NULL) { c->status_block = (i2o_status_block *) kmalloc(sizeof(i2o_status_block),GFP_KERNEL); if (c->status_block == NULL) { printk(KERN_CRIT "%s: Get Status Block failed; Out of memory.\n", c->name); return -ENOMEM; } } status_block = (u8*)c->status_block; memset(c->status_block,0,sizeof(i2o_status_block)); m=i2o_wait_message(c, "StatusGet"); if(m==0xFFFFFFFF) return -ETIMEDOUT; msg=(u32 *)(c->mem_offset+m); msg[0]=NINE_WORD_MSG_SIZE|SGL_OFFSET_0; msg[1]=I2O_CMD_STATUS_GET<<24|HOST_TID<<12|ADAPTER_TID; msg[2]=core_context; msg[3]=0; msg[4]=0; msg[5]=0; msg[6]=virt_to_bus(c->status_block); msg[7]=0; /* 64bit host FIXME */ msg[8]=sizeof(i2o_status_block); /* always 88 bytes */ i2o_post_message(c,m); /* Wait for a reply */ time=jiffies; while(status_block[87]!=0xFF) { if((jiffies-time)>=5*HZ) { printk(KERN_ERR "%s: Get status timeout.\n",c->name); return -ETIMEDOUT; } schedule(); barrier(); }#ifdef DRIVERDEBUG printk(KERN_INFO "%s: State = ", c->name); switch (c->status_block->iop_state) { case 0x01: printk("INIT\n"); break; case 0x02: printk("RESET\n"); break; case 0x04: printk("HOLD\n"); break; case 0x05: printk("READY\n"); break; case 0x08: printk("OPERATIONAL\n"); break; case 0x10: printk("FAILED\n"); break; case 0x11: printk("FAULTED\n"); break; default: printk("%x (unknown !!)\n",c->status_block->iop_state);} #endif return 0;}/* * Get the Hardware Resource Table for the device. * The HRT contains information about possible hidden devices * but is mostly useless to us */int i2o_hrt_get(struct i2o_controller *c){ u32 msg[6]; int ret, size = sizeof(i2o_hrt); /* Read first just the header to figure out the real size */ do { if (c->hrt == NULL) { c->hrt=kmalloc(size, GFP_KERNEL); if (c->hrt == NULL) { printk(KERN_CRIT "%s: Hrt Get failed; Out of memory.\n", c->name); return -ENOMEM; } } msg[0]= SIX_WORD_MSG_SIZE| SGL_OFFSET_4; msg[1]= I2O_CMD_HRT_GET<<24 | HOST_TID<<12 | ADAPTER_TID; msg[3]= 0; msg[4]= (0xD0000000 | size); /* Simple transaction */ msg[5]= virt_to_bus(c->hrt); /* Dump it here */ if ((ret = i2o_post_wait(c, msg, sizeof(msg), 20))) { printk(KERN_ERR "%s: Unable to get HRT (status=%#x)\n", c->name, -ret); return ret; } if (c->hrt->num_entries * c->hrt->entry_len << 2 > size) { size = c->hrt->num_entries * c->hrt->entry_len << 2; kfree(c->hrt); c->hrt = NULL; } } while (c->hrt == NULL); i2o_parse_hrt(c); // just for debugging return 0;}/* * Send the I2O System Table to the specified IOP * * The system table contains information about all the IOPs in the * system. It is build and then sent to each IOP so that IOPs can * establish connections between each other. * */static int i2o_systab_send(struct i2o_controller *iop){ u32 msg[12]; u32 privmem[2]; u32 privio[2]; int ret; privmem[0] = iop->status_block->current_mem_base; privmem[1] = iop->status_block->current_mem_size; privio[0] = iop->status_block->current_io_base; privio[1] = iop->status_block->current_io_size; msg[0] = I2O_MESSAGE_SIZE(12) | SGL_OFFSET_6; msg[1] = I2O_CMD_SYS_TAB_SET<<24 | HOST_TID<<12 | ADAPTER_TID; msg[3] = 0; msg[4] = (0<<16) | ((iop->unit+2) << 12); /* Host 0 IOP ID (unit + 2) */ msg[5] = 0; /* Segment 0 */ /* * Provide three SGL-elements: * System table (SysTab), Private memory space declaration and * Private i/o space declaration */ msg[6] = 0x54000000 | sys_tbl_len; msg[7] = virt_to_bus(sys_tbl); msg[8] = 0x54000000 | 0; msg[9] = virt_to_bus(privmem); msg[10] = 0xD4000000 | 0; msg[11] = virt_to_bus(privio); if ((ret=i2o_post_wait(iop, msg, sizeof(msg), 120))) printk(KERN_INFO "%s: Unable to set SysTab (status=%#x).\n", iop->name, -ret); else dprintk(KERN_INFO "%s: SysTab set.\n", iop->name); i2o_status_get(iop); // Entered READY state return ret; }/* * Initialize I2O subsystem. */static void __init i2o_sys_init(void){ struct i2o_controller *iop, *niop = NULL; printk(KERN_INFO "Activating I2O controllers...\n"); printk(KERN_INFO "This may take a few minutes if there are many devices\n"); /* In INIT state, Activate IOPs */ for (iop = i2o_controller_chain; iop; iop = niop) { dprintk(KERN_INFO "Calling i2o_activate_controller for %s...\n", iop->name); niop = iop->next; if (i2o_activate_controller(iop) < 0) i2o_delete_controller(iop); } /* Active IOPs in HOLD state */rebuild_sys_tab: if (i2o_controller_chain == NULL) return; /* * If build_sys_table fails, we kill everything and bail * as we can't init the IOPs w/o a system table */ dprintk(KERN_INFO "i2o_core: Calling i2o_build_sys_table...\n"); if (i2o_build_sys_table() < 0) { i2o_sys_shutdown(); return; } /* If IOP don't get online, we need to rebuild the System table */ for (iop = i2o_controller_chain; iop; iop = niop) { niop = iop->next; dprintk(KERN_INFO "Calling i2o_online_controller for %s...\n", iop->name); if (i2o_online_controller(iop) < 0) { i2o_delete_controller(iop); goto rebuild_sys_tab; } } /* Active IOPs now in OPERATIONAL state */ /* * Register for status updates from all IOPs */ for(iop = i2o_controller_chain; iop; iop=iop->next) { /* Create a kernel thread to deal with dynamic LCT updates */ iop->lct_pid = kernel_thread(i2o_dyn_lct, iop, CLONE_SIGHAND); /* Update change ind on DLCT */ iop->dlct->change_ind = iop->lct->change_ind; /* Start dynamic LCT updates */ i2o_lct_notify(iop); /* Register for all events from IRTOS */ i2o_event_register(iop, core_context, 0, 0, 0xFFFFFFFF); }}/** * i2o_sys_shutdown - shutdown I2O system * * Bring down each i2o controller and then return. Each controller * is taken through an orderly shutdown */ static void i2o_sys_shutdown(void){ struct i2o_controller *iop, *niop; /* Delete all IOPs from the controller chain */ /* that will reset all IOPs too */ for (iop = i2o_controller_chain; iop; iop = niop) { niop = iop->next; i2o_delete_controller(iop); }}/** * i2o_activate_controller - bring controller up to HOLD * @iop: controller * * This function brings an I2O controller into HOLD state. The adapter * is reset if neccessary and then the queues and resource table * are read. -1 is returned on a failure, 0 on success. * */ int i2o_activate_controller(struct i2o_controller *iop){ /* In INIT state, Wait Inbound Q to initialize (in i2o_status_get) */ /* In READY state, Get status */ if (i2o_status_get(iop) < 0) { printk(KERN_INFO "Unable to obtain status of %s, " "attempting a reset.\n", iop->name); if (i2o_reset_controller(iop) < 0) return -1; } if(iop->status_block->iop_state == ADAPTER_STATE_FAULTED) { printk(KERN_CRIT "%s: hardware fault\n", iop->name); return -1; } if (iop->status_block->i2o_version > I2OVER15) { printk(KERN_ERR "%s: Not running vrs. 1.5. of the I2O Specification.\n", iop->name); return -1; } if (iop->status_block->iop_state == ADAPTER_STATE_READY || iop->status_block->iop_state == ADAPTER_STATE_OPERATIONAL || iop->status_block->iop_state == ADAPTER_STATE_HOLD || iop->status_block->iop_state == ADAPTER_STATE_FAILED) { dprintk(KERN_INFO "%s: Already running, trying to reset...\n", iop->name); if (i2o_reset_controller(iop) < 0) return -1; } if (i2o_init_outbound_q(iop) < 0) return -1; if (i2o_post_outbound_messages(iop)) return -1; /* In HOLD state */ if (i2o_hrt_get(iop) < 0) return -1; return 0;}/** * i2o_init_outbound_queue - setup the outbound queue * @c: controller * * Clear and (re)initialize IOP's outbound queue. Returns 0 on * success or a negative errno code on a failure. */ int i2o_init_outbound_q(struct i2o_controller *c){ u8 *status; u32 m; u32 *msg; u32 time; dprintk(KERN_INFO "%s: Initializing Outbound Queue...\n", c->name); m=i2o_wait_message(c, "OutboundInit"); if(m==0xFFFFFFFF) return -ETIMEDOUT; msg=(u32 *)(c->mem_offset+m); status = kmalloc(4,GFP_KERNEL); if (status==NULL) { printk(KERN_ERR "%s: Outbound Queue initialization failed - no free memory.\n", c->name); return -ENOMEM; } memset(status, 0, 4); msg[0]= EIGHT_WORD_MSG_SIZE| TRL_OFFSET_6; msg[1]= I2O_CMD_OUTBOUND_INIT<<24 | HOST_TID<<12 | ADAPTER_TID; msg[2]= core_context; msg[3]= 0x0106; /* Transaction context */ msg[4]= 4096; /* Host page frame size */ /* Frame size is in words. Pick 128, its what everyone elses uses and other sizes break some adapters. */ msg[5]= MSG_FRAME_SIZE<<16|0x80; /* Outbound msg frame size and Initcode */ msg[6]= 0xD0000004; /* Simple SG LE, EOB */ msg[7]= virt_to_bus(status); i2o_post_message(c,m); barrier(); time=jiffies; while(status[0] < I2O_CMD_REJECTED) { if((jiffies-time)>=30*HZ) { if(status[0]==0x00) printk(KERN_ERR "%s: Ignored queue initialize request.\n", c->name); else printk(KERN_ERR "%s: Outbound queue initialize timeout.\n", c->name); kfree(status); return -ETIMEDOUT; } schedule(); barrier(); } if(status[0] != I2O_CMD_COMPLETED) { printk(KERN_ERR "%s: IOP outbound initialise failed.\n", c->name); kfree(status); return -ETIMEDOUT; } return 0;}/** * i2o_post_outbound_messages - fill message queue * @c: controller * * Allocate a message frame and load the messages into the IOP. The * function returns zero on success or a negative errno code on * failure. */int i2o_post_outbound_messages(struct i2o_controller *c){ int i; u32 m; /* Alloc space for IOP's outbound queue message frames */ c->page_frame = kmalloc(MSG_POOL_SIZE, GFP_KERNEL); if(c->page_frame==NULL) { printk(KERN_CRIT "%s: Outbound Q initialize failed; out of memory.\n", c->name); return -ENOMEM; } m=virt_to_bus(c->page_frame); /* Post frames */ for(i=0; i< NMBR_MSG_FRAMES; i++) { I2O_REPLY_WRITE32(c,m); mb(); m += MSG_FRAME_SIZE; } return 0;}/* * Get the IOP's Logical Configuration Table */int i2o_lct_get(struct i2o_controller *c){ u32 msg[8]; int ret, size = c->status_block->expected_lct_size; do { if (c->lct == NULL) { c->lct = kmalloc(size, GFP_KERNEL); if(c->lct == NULL) { printk(KERN_CRIT "%s: Lct Get failed. Out of memory.\n", c->name); return -ENOMEM; } } memset(c->lct, 0, size); msg[0] = EIGHT_WORD_MSG_SIZE|SGL_OFFSET_6; msg[1] = I2O_CMD_LCT_NOTIFY<<24 | HOST_TID<<12 | ADAPTER_TID; /* msg[2] filled in i2o_post_wait */ msg[3] = 0; msg[4] = 0xFFFFFFFF; /* All devices */ msg[5] = 0x00000000; /* Report now */ msg[6] = 0xD0000000|size; msg[7] = virt_to_bus(c->lct); if ((ret=i2o_post_wait(c, msg, sizeof(msg), 120))) { printk(KERN_ERR "%s: LCT Get failed (status=%#x.\n", c->name, -ret); return ret; } if (c->lct->table_size << 2 > size) { size = c->lct->table_size << 2; kfree(c->lct); c->lct = NULL; } } while (c->lct == NULL); if ((ret=i2o_parse_lct(c)) < 0) return ret; return 0;}/* * Like above, but used for async notification. The main * difference is that we keep track of the CurrentChangeIndiicator * so that we only get updates when it actually changes. *
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -