📄 jsflash.c
字号:
/* * drivers/sbus/char/jsflash.c * * Copyright (C) 1991, 1992 Linus Torvalds (drivers/char/mem.c) * Copyright (C) 1997 Eddie C. Dost (drivers/sbus/char/flash.c) * Copyright (C) 1997-2000 Pavel Machek <pavel@ucw.cz> (drivers/block/nbd.c) * Copyright (C) 1999-2000 Pete Zaitcev * * This driver is used to program OS into a Flash SIMM on * Krups and Espresso platforms. * * TODO: do not allow erase/programming if file systems are mounted. * TODO: Erase/program both banks of a 8MB SIMM. * * It is anticipated that programming an OS Flash will be a routine * procedure. In the same time it is exeedingly dangerous because * a user can program its OBP flash with OS image and effectively * kill the machine. * * This driver uses an interface different from Eddie's flash.c * as a silly safeguard. * * XXX The flash.c manipulates page caching characteristics in a certain * dubious way; also it assumes that remap_page_range() can remap * PCI bus locations, which may be false. ioremap() must be used * instead. We should discuss this. */#include <linux/module.h>#include <linux/types.h>#include <linux/errno.h>#include <linux/miscdevice.h>#include <linux/malloc.h>#include <linux/fcntl.h>#include <linux/poll.h>#include <linux/init.h>#include <linux/string.h>#include <linux/smp_lock.h>/* * <linux/blk.h> is controlled from the outside with these definitions. */#define MAJOR_NR JSFD_MAJOR#define DEVICE_NAME "jsfd"#define DEVICE_REQUEST jsfd_do_request#define DEVICE_NR(device) (MINOR(device))#define DEVICE_ON(device)#define DEVICE_OFF(device)#define DEVICE_NO_RANDOM#include <linux/blk.h>#include <asm/uaccess.h>#include <asm/pgtable.h>#include <asm/io.h>#include <asm/pcic.h>#include <asm/oplib.h>#include <asm/jsflash.h> /* ioctl arguments. <linux/> ?? */#define JSFIDSZ (sizeof(struct jsflash_ident_arg))#define JSFPRGSZ (sizeof(struct jsflash_program_arg))/* * Our device numbers have no business in system headers. * The only thing a user knows is the device name /dev/jsflash. * * Block devices are laid out like this: * minor+0 - Bootstrap, for 8MB SIMM 0x20400000[0x800000] * minor+1 - Filesystem to mount, normally 0x20400400[0x7ffc00] * minor+2 - Whole flash area for any case... 0x20000000[0x01000000] * Total 3 minors per flash device. * * It is easier to have static size vectors, so we define * a total minor range JSF_MAX, which must cover all minors. *//* character device */#define JSF_MINOR 178 /* 178 is registered with hpa *//* block device */#define JSF_MAX 3 /* 3 minors wasted total so far. */#define JSF_NPART 3 /* 3 minors per flash device */#define JSF_PART_BITS 2 /* 2 bits of minors to cover JSF_NPART */#define JSF_PART_MASK 0x3 /* 2 bits mask *//* * Access functions. * We could ioremap(), but it's easier this way. */static unsigned int jsf_inl(unsigned long addr){ unsigned long retval; __asm__ __volatile__("lda [%1] %2, %0\n\t" : "=r" (retval) : "r" (addr), "i" (ASI_M_BYPASS)); return retval;}static void jsf_outl(unsigned long addr, __u32 data){ __asm__ __volatile__("sta %0, [%1] %2\n\t" : : "r" (data), "r" (addr), "i" (ASI_M_BYPASS) : "memory");}/* * soft carrier */struct jsfd_part { unsigned long dbase; unsigned long dsize; int refcnt;};struct jsflash { unsigned long base; unsigned long size; unsigned long busy; /* In use? */ struct jsflash_ident_arg id; /* int mbase; */ /* Minor base, typically zero */ struct jsfd_part dv[JSF_NPART];};/* * We do not map normal memory or obio as a safety precaution. * But offsets are real, for ease of userland programming. */#define JSF_BASE_TOP 0x30000000#define JSF_BASE_ALL 0x20000000#define JSF_BASE_JK 0x20400000/* */static int jsfd_blksizes[JSF_MAX];static int jsfd_sizes[JSF_MAX];static u64 jsfd_bytesizes[JSF_MAX];/* * Let's pretend we may have several of these... */static struct jsflash jsf0;/* * Wait for AMD to finish its embedded algorithm. * We use the Toggle bit DQ6 (0x40) because it does not * depend on the data value as /DATA bit DQ7 does. * * XXX Do we need any timeout here? So far it never hanged, beware broken hw. */static void jsf_wait(unsigned long p) { unsigned int x1, x2; for (;;) { x1 = jsf_inl(p); x2 = jsf_inl(p); if ((x1 & 0x40404040) == (x2 & 0x40404040)) return; }}/* * Programming will only work if Flash is clean, * we leave it to the programmer application. * * AMD must be programmed one byte at a time; * thus, Simple Tech SIMM must be written 4 bytes at a time. * * Write waits for the chip to become ready after the write * was finished. This is done so that application would read * consistent data after the write is done. */static void jsf_write4(unsigned long fa, u32 data) { jsf_outl(fa, 0xAAAAAAAA); /* Unlock 1 Write 1 */ jsf_outl(fa, 0x55555555); /* Unlock 1 Write 2 */ jsf_outl(fa, 0xA0A0A0A0); /* Byte Program */ jsf_outl(fa, data); jsf_wait(fa);}/* */static void jsfd_read(char *buf, unsigned long p, size_t togo) { union byte4 { char s[4]; unsigned int n; } b; while (togo >= 4) { togo -= 4; b.n = jsf_inl(p); memcpy(buf, b.s, 4); p += 4; buf += 4; }}static void jsfd_do_request(request_queue_t *q){ struct request *req; int dev; struct jsfd_part *jdp; unsigned long offset; size_t len; for (;;) { INIT_REQUEST; /* if (QUEUE_EMPTY) return; */ req = CURRENT; dev = MINOR(req->rq_dev); if (dev >= JSF_MAX || (dev & JSF_PART_MASK) >= JSF_NPART) { end_request(0); continue; } jdp = &jsf0.dv[dev & JSF_PART_MASK]; offset = req->sector << 9; len = req->current_nr_sectors << 9; if ((offset + len) > jdp->dsize) { end_request(0); continue; } if (req->cmd == WRITE) { printk(KERN_ERR "jsfd: write\n"); end_request(0); continue; } if (req->cmd != READ) { printk(KERN_ERR "jsfd: bad req->cmd %d\n", req->cmd); end_request(0); continue; } if ((jdp->dbase & 0xff000000) != 0x20000000) { printk(KERN_ERR "jsfd: bad base %x\n", (int)jdp->dbase); end_request(0); continue; }/* printk("jsfd%d: read buf %p off %x len %x\n", dev, req->buffer, (int)offset, (int)len); */ /* P3 */ jsfd_read(req->buffer, jdp->dbase + offset, len); end_request(1); }}/* * The memory devices use the full 32/64 bits of the offset, and so we cannot * check against negative addresses: they are ok. The return value is weird, * though, in that case (0). * * also note that seeking relative to the "end of file" isn't supported: * it has no meaning, so it returns -EINVAL. */static loff_t jsf_lseek(struct file * file, loff_t offset, int orig){ switch (orig) { case 0: file->f_pos = offset; return file->f_pos; case 1: file->f_pos += offset; return file->f_pos; default: return -EINVAL; }}/* * OS SIMM Cannot be read in other size but a 32bits word. */static ssize_t jsf_read(struct file * file, char * buf, size_t togo, loff_t *ppos){ unsigned long p = *ppos; char *tmp = buf; union byte4 { char s[4]; unsigned int n; } b; if (verify_area(VERIFY_WRITE, buf, togo)) return -EFAULT; if (p < JSF_BASE_ALL || p >= JSF_BASE_TOP) { return 0; } if ((p + togo) < p /* wrap */ || (p + togo) >= JSF_BASE_TOP) { togo = JSF_BASE_TOP - p; } if (p < JSF_BASE_ALL && togo != 0) {#if 0 /* __bzero XXX */ size_t x = JSF_BASE_ALL - p; if (x > togo) x = togo; clear_user(tmp, x); tmp += x; p += x; togo -= x;#else /* * Implementation of clear_user() calls __bzero * without regard to modversions, * so we cannot build a module. */ return 0;#endif } while (togo >= 4) { togo -= 4; b.n = jsf_inl(p); copy_to_user(tmp, b.s, 4); tmp += 4; p += 4; } /* * XXX Small togo may remain if 1 byte is ordered. * It would be nice if we did a word size read and unpacked it. */ *ppos = p; return tmp-buf;}static ssize_t jsf_write(struct file * file, const char * buf, size_t count, loff_t *ppos){ return -ENOSPC;}/* */static int jsf_ioctl_erase(unsigned long arg){ unsigned long p; /* p = jsf0.base; hits wrong bank */ p = 0x20400000; jsf_outl(p, 0xAAAAAAAA); /* Unlock 1 Write 1 */ jsf_outl(p, 0x55555555); /* Unlock 1 Write 2 */ jsf_outl(p, 0x80808080); /* Erase setup */ jsf_outl(p, 0xAAAAAAAA); /* Unlock 2 Write 1 */ jsf_outl(p, 0x55555555); /* Unlock 2 Write 2 */ jsf_outl(p, 0x10101010); /* Chip erase */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -