⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 traps.c

📁 Linux内核源代码 为压缩文件 是<<Linux内核>>一书中的源代码
💻 C
字号:
/* * This file is subject to the terms and conditions of the GNU General Public * License.  See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994 - 1999 by Ralf Baechle * Copyright (C) 1995, 1996 Paul M. Antoine * Copyright (C) 1998 Ulf Carlsson * Copyright (C) 1999 Silicon Graphics, Inc. */#include <linux/config.h>#include <linux/init.h>#include <linux/mm.h>#include <linux/sched.h>#include <linux/smp.h>#include <linux/smp_lock.h>#include <linux/spinlock.h>#include <asm/branch.h>#include <asm/cachectl.h>#include <asm/pgtable.h>#include <asm/io.h>#include <asm/bootinfo.h>#include <asm/ptrace.h>#include <asm/watch.h>#include <asm/system.h>#include <asm/uaccess.h>#include <asm/mmu_context.h>extern asmlinkage void __xtlb_mod(void);extern asmlinkage void __xtlb_tlbl(void);extern asmlinkage void __xtlb_tlbs(void);extern asmlinkage void handle_adel(void);extern asmlinkage void handle_ades(void);extern asmlinkage void handle_ibe(void);extern asmlinkage void handle_dbe(void);extern asmlinkage void handle_sys(void);extern asmlinkage void handle_bp(void);extern asmlinkage void handle_ri(void);extern asmlinkage void handle_cpu(void);extern asmlinkage void handle_ov(void);extern asmlinkage void handle_tr(void);extern asmlinkage void handle_fpe(void);extern asmlinkage void handle_watch(void);extern asmlinkage void handle_reserved(void);static char *cpu_names[] = CPU_NAMES;char watch_available = 0;char dedicated_iv_available = 0;char vce_available = 0;char mips4_available = 0;int kstack_depth_to_print = 24;/* * These constant is for searching for possible module text segments. * MODULE_RANGE is a guess of how much space is likely to be vmalloced. */#define MODULE_RANGE (8*1024*1024)/* * This routine abuses get_user()/put_user() to reference pointers * with at least a bit of error checking ... */void show_stack(unsigned long *sp){	int i;	unsigned long *stack;	stack = sp;	i = 0;	printk("Stack:");	while ((unsigned long) stack & (PAGE_SIZE - 1)) {		unsigned long stackdata;		if (__get_user(stackdata, stack++)) {			printk(" (Bad stack address)");			break;		}		printk(" %016lx", stackdata);		if (++i > 40) {			printk(" ...");			break;		}		if (i % 4 == 0)			printk("\n      ");	}}void show_trace(unsigned long *sp){	int i;	unsigned long *stack;	unsigned long kernel_start, kernel_end;	unsigned long module_start, module_end;	extern char _stext, _etext;	stack = sp;	i = 0;	kernel_start = (unsigned long) &_stext;	kernel_end = (unsigned long) &_etext;	module_start = VMALLOC_START;	module_end = module_start + MODULE_RANGE;	printk("\nCall Trace:");	while ((unsigned long) stack & (PAGE_SIZE -1)) {		unsigned long addr;		if (__get_user(addr, stack++)) {			printk(" (Bad stack address)\n");			break;		}		/*		 * If the address is either in the text segment of the		 * kernel, or in the region which contains vmalloc'ed		 * memory, it *may* be the address of a calling		 * routine; if so, print it so that someone tracing		 * down the cause of the crash will be able to figure		 * out the call path that was taken.		 */		if ((addr >= kernel_start && addr < kernel_end) ||		    (addr >= module_start && addr < module_end)) { 			/* Since our kernel is still at KSEG0,			 * truncate the address so that ksymoops			 * understands it.			 */			printk(" [<%08x>]", (unsigned int) addr);			if (++i > 40) {				printk(" ...");				break;			}		}	}}void show_code(unsigned int *pc){	long i;	printk("\nCode:");	for(i = -3 ; i < 6 ; i++) {		unsigned int insn;		if (__get_user(insn, pc + i)) {			printk(" (Bad address in epc)\n");			break;		}		printk("%c%08x%c",(i?' ':'<'),insn,(i?' ':'>'));	}}spinlock_t die_lock;void die(const char * str, struct pt_regs * regs, unsigned long err){	if (user_mode(regs))	/* Just return if in user mode.  */		return;	console_verbose();	spin_lock_irq(&die_lock);	printk("%s: %04lx\n", str, err & 0xffff);	show_regs(regs);	printk("Process %s (pid: %d, stackpage=%08lx)\n",		current->comm, current->pid, (unsigned long) current);	show_stack((unsigned long *) regs->regs[29]);	show_trace((unsigned long *) regs->regs[29]);	show_code((unsigned int *) regs->cp0_epc);	printk("\n");	spin_unlock_irq(&die_lock);	do_exit(SIGSEGV);}void die_if_kernel(const char * str, struct pt_regs * regs, unsigned long err){	if (!user_mode(regs))		die(str, regs, err);}void do_ov(struct pt_regs *regs){	if (compute_return_epc(regs))		return;	force_sig(SIGFPE, current);}#ifdef CONFIG_MIPS_FPE_MODULEstatic void (*fpe_handler)(struct pt_regs *regs, unsigned int fcr31);/* * Register_fpe/unregister_fpe are for debugging purposes only.  To make * this hack work a bit better there is no error checking. */int register_fpe(void (*handler)(struct pt_regs *regs, unsigned int fcr31)){	fpe_handler = handler;	return 0;}int unregister_fpe(void (*handler)(struct pt_regs *regs, unsigned int fcr31)){	fpe_handler = NULL;	return 0;}#endif/* * XXX Delayed fp exceptions when doing a lazy ctx switch XXX */void do_fpe(struct pt_regs *regs, unsigned long fcr31){	unsigned long pc;	unsigned int insn;	extern void simfp(unsigned int);#ifdef CONFIG_MIPS_FPE_MODULE	if (fpe_handler != NULL) {		fpe_handler(regs, fcr31);		return;	}#endif	if (fcr31 & 0x20000) {		/* Retry instruction with flush to zero ...  */		if (!(fcr31 & (1<<24))) {			printk("Setting flush to zero for %s.\n",			       current->comm);			fcr31 &= ~0x20000;			fcr31 |= (1<<24);			__asm__ __volatile__(				"ctc1\t%0,$31"				: /* No outputs */				: "r" (fcr31));			return;		}		pc = regs->cp0_epc + ((regs->cp0_cause & CAUSEF_BD) ? 4 : 0);		if (get_user(insn, (unsigned int *)pc)) {			/* XXX Can this happen?  */			force_sig(SIGSEGV, current);		}		printk(KERN_DEBUG "Unimplemented exception for insn %08x at 0x%08lx in %s.\n",		       insn, regs->cp0_epc, current->comm);		simfp(insn);	}	if (compute_return_epc(regs))		return;	//force_sig(SIGFPE, current);	printk(KERN_DEBUG "Should send SIGFPE to %s\n", current->comm);}static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode){	unsigned int *epc;	epc = (unsigned int *) (unsigned long) regs->cp0_epc;	if (regs->cp0_cause & CAUSEF_BD)		epc += 4;	if (verify_area(VERIFY_READ, epc, 4)) {		force_sig(SIGSEGV, current);		return 1;	}	*opcode = *epc;	return 0;}void do_bp(struct pt_regs *regs){	unsigned int opcode, bcode;	/*	 * There is the ancient bug in the MIPS assemblers that the break	 * code starts left to bit 16 instead to bit 6 in the opcode.	 * Gas is bug-compatible ...	 */	if (get_insn_opcode(regs, &opcode))		return;	bcode = ((opcode >> 16) & ((1 << 20) - 1));	/*	 * (A short test says that IRIX 5.3 sends SIGTRAP for all break	 * insns, even for break codes that indicate arithmetic failures.	 * Weird ...)	 */	force_sig(SIGTRAP, current);}void do_tr(struct pt_regs *regs){	unsigned int opcode, bcode;	if (get_insn_opcode(regs, &opcode))		return;	bcode = ((opcode >> 6) & ((1 << 20) - 1));	/*	 * (A short test says that IRIX 5.3 sends SIGTRAP for all break	 * insns, even for break codes that indicate arithmetic failures.	 * Wiered ...)	 */	force_sig(SIGTRAP, current);}void do_ri(struct pt_regs *regs){	printk("Cpu%d[%s:%d] Illegal instruction at %08lx ra=%08lx\n",	        smp_processor_id(), current->comm, current->pid, regs->cp0_epc, 		regs->regs[31]);	if (compute_return_epc(regs))		return;	force_sig(SIGILL, current);}void do_cpu(struct pt_regs *regs){	u32 cpid;	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;	if (cpid != 1)		goto bad_cid;	regs->cp0_status |= ST0_CU1;#ifndef CONFIG_SMP	if (last_task_used_math == current)		return;	if (current->used_math) {		/* Using the FPU again.  */		lazy_fpu_switch(last_task_used_math, current);	} else {				/* First time FPU user.  */		lazy_fpu_switch(last_task_used_math, 0);		init_fpu();		current->used_math = 1;	}	last_task_used_math = current;#else	if (current->used_math) {		lazy_fpu_switch(0, current);	} else {		init_fpu();		current->used_math = 1;	}	current->flags |= PF_USEDFPU;#endif	return;bad_cid:	force_sig(SIGILL, current);}void do_watch(struct pt_regs *regs){	/*	 * We use the watch exception where available to detect stack	 * overflows.	 */	show_regs(regs);	panic("Caught WATCH exception - probably caused by stack overflow.");}void do_reserved(struct pt_regs *regs){	/*	 * Game over - no way to handle this if it ever occurs.  Most probably	 * caused by a new unknown cpu type or after another deadly	 * hard/software error.	 */	panic("Caught reserved exception %ld - should not happen.",	      (regs->cp0_cause & 0x1f) >> 2);}static inline void watch_init(unsigned long cputype){	switch(cputype) {	case CPU_R10000:	case CPU_R4000MC:	case CPU_R4400MC:	case CPU_R4000SC:	case CPU_R4400SC:	case CPU_R4000PC:	case CPU_R4400PC:	case CPU_R4200:	case CPU_R4300:		set_except_vector(23, handle_watch);		watch_available = 1;		break;	}}/* * Some MIPS CPUs have a dedicated interrupt vector which reduces the * interrupt processing overhead.  Use it where available. * FIXME: more CPUs than just the Nevada have this feature. */static inline void setup_dedicated_int(void){	extern void except_vec4(void);	switch(mips_cputype) {	case CPU_NEVADA:		memcpy((void *)(KSEG0 + 0x200), except_vec4, 8);		set_cp0_cause(CAUSEF_IV, CAUSEF_IV);		dedicated_iv_available = 1;	}}unsigned long exception_handlers[32];/* * As a side effect of the way this is implemented we're limited * to interrupt handlers in the address range from * KSEG0 <= x < KSEG0 + 256mb on the Nevada.  Oh well ... */void set_except_vector(int n, void *addr){	unsigned long handler = (unsigned long) addr;	exception_handlers[n] = handler;	if (n == 0 && dedicated_iv_available) {		*(volatile u32 *)(KSEG0+0x200) = 0x08000000 |		                                 (0x03ffffff & (handler >> 2));		flush_icache_range(KSEG0+0x200, KSEG0 + 0x204);	}}static inline void mips4_setup(void){	switch (mips_cputype) {	case CPU_R5000:	case CPU_R5000A:	case CPU_NEVADA:	case CPU_R8000:	case CPU_R10000:		mips4_available = 1;		set_cp0_status(ST0_XX, ST0_XX);	}}static inline void go_64(void){	unsigned int bits;	bits = ST0_KX|ST0_SX|ST0_UX;	set_cp0_status(bits, bits);	printk("Entering 64-bit mode.\n");}void __init trap_init(void){	extern char except_vec0;	extern char except_vec1_r10k;	extern char except_vec2_generic;	extern char except_vec3_generic, except_vec3_r4000;	extern void bus_error_init(void);	unsigned long i;	/* Some firmware leaves the BEV flag set, clear it.  */	set_cp0_status(ST0_BEV, 0);	/* Copy the generic exception handler code to it's final destination. */	memcpy((void *)(KSEG0 + 0x100), &except_vec2_generic, 0x80);	memcpy((void *)(KSEG0 + 0x180), &except_vec3_generic, 0x80);	/*	 * Setup default vectors	 */	for(i = 0; i <= 31; i++)		set_except_vector(i, handle_reserved);	/*	 * Only some CPUs have the watch exceptions or a dedicated	 * interrupt vector.	 */	watch_init(mips_cputype);	setup_dedicated_int();	mips4_setup();	go_64();		/* In memoriam C128 ;-)  */	/*	 * Handling the following exceptions depends mostly of the cpu type	 */	switch(mips_cputype) {	case CPU_R10000:		/*		 * The R10000 is in most aspects similar to the R4400.  It		 * should get some special optimizations.		 */		write_32bit_cp0_register(CP0_FRAMEMASK, 0);		set_cp0_status(ST0_XX, ST0_XX);		goto r4k;	case CPU_R4000MC:	case CPU_R4400MC:	case CPU_R4000SC:	case CPU_R4400SC:		vce_available = 1;		/* Fall through ...  */	case CPU_R4000PC:	case CPU_R4400PC:	case CPU_R4200:	case CPU_R4300:	case CPU_R4600:	case CPU_R5000:	case CPU_NEVADA:r4k:		/* Debug TLB refill handler.  */		memcpy((void *)KSEG0, &except_vec0, 0x80);		memcpy((void *)KSEG0 + 0x080, &except_vec1_r10k, 0x80);		/* Cache error vector  */		memcpy((void *)(KSEG0 + 0x100), (void *) KSEG0, 0x80);		if (vce_available) {			memcpy((void *)(KSEG0 + 0x180), &except_vec3_r4000,			       0x180);		} else {			memcpy((void *)(KSEG0 + 0x180), &except_vec3_generic,			       0x100);		}		set_except_vector(1, __xtlb_mod);		set_except_vector(2, __xtlb_tlbl);		set_except_vector(3, __xtlb_tlbs);		set_except_vector(4, handle_adel);		set_except_vector(5, handle_ades);		/* DBE / IBE exception handler are system specific.  */		bus_error_init();		set_except_vector(8, handle_sys);		set_except_vector(9, handle_bp);		set_except_vector(10, handle_ri);		set_except_vector(11, handle_cpu);		set_except_vector(12, handle_ov);		set_except_vector(13, handle_tr);		set_except_vector(15, handle_fpe);		break;	case CPU_R8000:		panic("unsupported CPU type %s.\n", cpu_names[mips_cputype]);		break;	case CPU_UNKNOWN:	default:		panic("Unknown CPU type");	}	flush_icache_range(KSEG0, KSEG0 + 0x200);	atomic_inc(&init_mm.mm_count);	/* XXX UP?  */	current->active_mm = &init_mm;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -