⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 poly_sin.c

📁 Linux内核源代码 为压缩文件 是<<Linux内核>>一书中的源代码
💻 C
字号:
/*---------------------------------------------------------------------------+ |  poly_sin.c                                                               | |                                                                           | |  Computation of an approximation of the sin function and the cosine       | |  function by a polynomial.                                                | |                                                                           | | Copyright (C) 1992,1993,1994,1997,1999                                    | |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | |                  E-mail   billm@melbpc.org.au                             | |                                                                           | |                                                                           | +---------------------------------------------------------------------------*/#include "exception.h"#include "reg_constant.h"#include "fpu_emu.h"#include "fpu_system.h"#include "control_w.h"#include "poly.h"#define	N_COEFF_P	4#define	N_COEFF_N	4static const unsigned long long pos_terms_l[N_COEFF_P] ={  0xaaaaaaaaaaaaaaabLL,  0x00d00d00d00cf906LL,  0x000006b99159a8bbLL,  0x000000000d7392e6LL};static const unsigned long long neg_terms_l[N_COEFF_N] ={  0x2222222222222167LL,  0x0002e3bc74aab624LL,  0x0000000b09229062LL,  0x00000000000c7973LL};#define	N_COEFF_PH	4#define	N_COEFF_NH	4static const unsigned long long pos_terms_h[N_COEFF_PH] ={  0x0000000000000000LL,  0x05b05b05b05b0406LL,  0x000049f93edd91a9LL,  0x00000000c9c9ed62LL};static const unsigned long long neg_terms_h[N_COEFF_NH] ={  0xaaaaaaaaaaaaaa98LL,  0x001a01a01a019064LL,  0x0000008f76c68a77LL,  0x0000000000d58f5eLL};/*--- poly_sine() -----------------------------------------------------------+ |                                                                           | +---------------------------------------------------------------------------*/void	poly_sine(FPU_REG *st0_ptr){  int                 exponent, echange;  Xsig                accumulator, argSqrd, argTo4;  unsigned long       fix_up, adj;  unsigned long long  fixed_arg;  FPU_REG	      result;  exponent = exponent(st0_ptr);  accumulator.lsw = accumulator.midw = accumulator.msw = 0;  /* Split into two ranges, for arguments below and above 1.0 */  /* The boundary between upper and lower is approx 0.88309101259 */  if ( (exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa)) )    {      /* The argument is <= 0.88309101259 */      argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl; argSqrd.lsw = 0;      mul64_Xsig(&argSqrd, &significand(st0_ptr));      shr_Xsig(&argSqrd, 2*(-1-exponent));      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;      argTo4.lsw = argSqrd.lsw;      mul_Xsig_Xsig(&argTo4, &argTo4);      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,		      N_COEFF_N-1);      mul_Xsig_Xsig(&accumulator, &argSqrd);      negate_Xsig(&accumulator);      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,		      N_COEFF_P-1);      shr_Xsig(&accumulator, 2);    /* Divide by four */      accumulator.msw |= 0x80000000;  /* Add 1.0 */      mul64_Xsig(&accumulator, &significand(st0_ptr));      mul64_Xsig(&accumulator, &significand(st0_ptr));      mul64_Xsig(&accumulator, &significand(st0_ptr));      /* Divide by four, FPU_REG compatible, etc */      exponent = 3*exponent;      /* The minimum exponent difference is 3 */      shr_Xsig(&accumulator, exponent(st0_ptr) - exponent);      negate_Xsig(&accumulator);      XSIG_LL(accumulator) += significand(st0_ptr);      echange = round_Xsig(&accumulator);      setexponentpos(&result, exponent(st0_ptr) + echange);    }  else    {      /* The argument is > 0.88309101259 */      /* We use sin(st(0)) = cos(pi/2-st(0)) */      fixed_arg = significand(st0_ptr);      if ( exponent == 0 )	{	  /* The argument is >= 1.0 */	  /* Put the binary point at the left. */	  fixed_arg <<= 1;	}      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */      fixed_arg = 0x921fb54442d18469LL - fixed_arg;      /* There is a special case which arises due to rounding, to fix here. */      if ( fixed_arg == 0xffffffffffffffffLL )	fixed_arg = 0;      XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0;      mul64_Xsig(&argSqrd, &fixed_arg);      XSIG_LL(argTo4) = XSIG_LL(argSqrd); argTo4.lsw = argSqrd.lsw;      mul_Xsig_Xsig(&argTo4, &argTo4);      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,		      N_COEFF_NH-1);      mul_Xsig_Xsig(&accumulator, &argSqrd);      negate_Xsig(&accumulator);      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,		      N_COEFF_PH-1);      negate_Xsig(&accumulator);      mul64_Xsig(&accumulator, &fixed_arg);      mul64_Xsig(&accumulator, &fixed_arg);      shr_Xsig(&accumulator, 3);      negate_Xsig(&accumulator);      add_Xsig_Xsig(&accumulator, &argSqrd);      shr_Xsig(&accumulator, 1);      accumulator.lsw |= 1;  /* A zero accumulator here would cause problems */      negate_Xsig(&accumulator);      /* The basic computation is complete. Now fix the answer to	 compensate for the error due to the approximation used for	 pi/2	 */      /* This has an exponent of -65 */      fix_up = 0x898cc517;      /* The fix-up needs to be improved for larger args */      if ( argSqrd.msw & 0xffc00000 )	{	  /* Get about 32 bit precision in these: */	  fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6;	}      fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg));      adj = accumulator.lsw;    /* temp save */      accumulator.lsw -= fix_up;      if ( accumulator.lsw > adj )	XSIG_LL(accumulator) --;      echange = round_Xsig(&accumulator);      setexponentpos(&result, echange - 1);    }  significand(&result) = XSIG_LL(accumulator);  setsign(&result, getsign(st0_ptr));  FPU_copy_to_reg0(&result, TAG_Valid);#ifdef PARANOID  if ( (exponent(&result) >= 0)      && (significand(&result) > 0x8000000000000000LL) )    {      EXCEPTION(EX_INTERNAL|0x150);    }#endif PARANOID}/*--- poly_cos() ------------------------------------------------------------+ |                                                                           | +---------------------------------------------------------------------------*/void	poly_cos(FPU_REG *st0_ptr){  FPU_REG	      result;  long int            exponent, exp2, echange;  Xsig                accumulator, argSqrd, fix_up, argTo4;  unsigned long long  fixed_arg;#ifdef PARANOID  if ( (exponent(st0_ptr) > 0)      || ((exponent(st0_ptr) == 0)	  && (significand(st0_ptr) > 0xc90fdaa22168c234LL)) )    {      EXCEPTION(EX_Invalid);      FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);      return;    }#endif PARANOID  exponent = exponent(st0_ptr);  accumulator.lsw = accumulator.midw = accumulator.msw = 0;  if ( (exponent < -1) || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54)) )    {      /* arg is < 0.687705 */      argSqrd.msw = st0_ptr->sigh; argSqrd.midw = st0_ptr->sigl;      argSqrd.lsw = 0;      mul64_Xsig(&argSqrd, &significand(st0_ptr));      if ( exponent < -1 )	{	  /* shift the argument right by the required places */	  shr_Xsig(&argSqrd, 2*(-1-exponent));	}      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;      argTo4.lsw = argSqrd.lsw;      mul_Xsig_Xsig(&argTo4, &argTo4);      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,		      N_COEFF_NH-1);      mul_Xsig_Xsig(&accumulator, &argSqrd);      negate_Xsig(&accumulator);      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,		      N_COEFF_PH-1);      negate_Xsig(&accumulator);      mul64_Xsig(&accumulator, &significand(st0_ptr));      mul64_Xsig(&accumulator, &significand(st0_ptr));      shr_Xsig(&accumulator, -2*(1+exponent));      shr_Xsig(&accumulator, 3);      negate_Xsig(&accumulator);      add_Xsig_Xsig(&accumulator, &argSqrd);      shr_Xsig(&accumulator, 1);      /* It doesn't matter if accumulator is all zero here, the	 following code will work ok */      negate_Xsig(&accumulator);      if ( accumulator.lsw & 0x80000000 )	XSIG_LL(accumulator) ++;      if ( accumulator.msw == 0 )	{	  /* The result is 1.0 */	  FPU_copy_to_reg0(&CONST_1, TAG_Valid);	  return;	}      else	{	  significand(&result) = XSIG_LL(accumulator);      	  /* will be a valid positive nr with expon = -1 */	  setexponentpos(&result, -1);	}    }  else    {      fixed_arg = significand(st0_ptr);      if ( exponent == 0 )	{	  /* The argument is >= 1.0 */	  /* Put the binary point at the left. */	  fixed_arg <<= 1;	}      /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */      fixed_arg = 0x921fb54442d18469LL - fixed_arg;      /* There is a special case which arises due to rounding, to fix here. */      if ( fixed_arg == 0xffffffffffffffffLL )	fixed_arg = 0;      exponent = -1;      exp2 = -1;      /* A shift is needed here only for a narrow range of arguments,	 i.e. for fixed_arg approx 2^-32, but we pick up more... */      if ( !(LL_MSW(fixed_arg) & 0xffff0000) )	{	  fixed_arg <<= 16;	  exponent -= 16;	  exp2 -= 16;	}      XSIG_LL(argSqrd) = fixed_arg; argSqrd.lsw = 0;      mul64_Xsig(&argSqrd, &fixed_arg);      if ( exponent < -1 )	{	  /* shift the argument right by the required places */	  shr_Xsig(&argSqrd, 2*(-1-exponent));	}      argTo4.msw = argSqrd.msw; argTo4.midw = argSqrd.midw;      argTo4.lsw = argSqrd.lsw;      mul_Xsig_Xsig(&argTo4, &argTo4);      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,		      N_COEFF_N-1);      mul_Xsig_Xsig(&accumulator, &argSqrd);      negate_Xsig(&accumulator);      polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,		      N_COEFF_P-1);      shr_Xsig(&accumulator, 2);    /* Divide by four */      accumulator.msw |= 0x80000000;  /* Add 1.0 */      mul64_Xsig(&accumulator, &fixed_arg);      mul64_Xsig(&accumulator, &fixed_arg);      mul64_Xsig(&accumulator, &fixed_arg);      /* Divide by four, FPU_REG compatible, etc */      exponent = 3*exponent;      /* The minimum exponent difference is 3 */      shr_Xsig(&accumulator, exp2 - exponent);      negate_Xsig(&accumulator);      XSIG_LL(accumulator) += fixed_arg;      /* The basic computation is complete. Now fix the answer to	 compensate for the error due to the approximation used for	 pi/2	 */      /* This has an exponent of -65 */      XSIG_LL(fix_up) = 0x898cc51701b839a2ll;      fix_up.lsw = 0;      /* The fix-up needs to be improved for larger args */      if ( argSqrd.msw & 0xffc00000 )	{	  /* Get about 32 bit precision in these: */	  fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2;	  fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24;	}      exp2 += norm_Xsig(&accumulator);      shr_Xsig(&accumulator, 1); /* Prevent overflow */      exp2++;      shr_Xsig(&fix_up, 65 + exp2);      add_Xsig_Xsig(&accumulator, &fix_up);      echange = round_Xsig(&accumulator);      setexponentpos(&result, exp2 + echange);      significand(&result) = XSIG_LL(accumulator);    }  FPU_copy_to_reg0(&result, TAG_Valid);#ifdef PARANOID  if ( (exponent(&result) >= 0)      && (significand(&result) > 0x8000000000000000LL) )    {      EXCEPTION(EX_INTERNAL|0x151);    }#endif PARANOID}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -