⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fpu_entry.c

📁 Linux内核源代码 为压缩文件 是<<Linux内核>>一书中的源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/*---------------------------------------------------------------------------+ |  fpu_entry.c                                                              | |                                                                           | | The entry functions for wm-FPU-emu                                        | |                                                                           | | Copyright (C) 1992,1993,1994,1996,1997                                    | |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | |                  E-mail   billm@suburbia.net                              | |                                                                           | | See the files "README" and "COPYING" for further copyright and warranty   | | information.                                                              | |                                                                           | +---------------------------------------------------------------------------*//*---------------------------------------------------------------------------+ | Note:                                                                     | |    The file contains code which accesses user memory.                     | |    Emulator static data may change when user memory is accessed, due to   | |    other processes using the emulator while swapping is in progress.      | +---------------------------------------------------------------------------*//*---------------------------------------------------------------------------+ | math_emulate(), restore_i387_soft() and save_i387_soft() are the only     | | entry points for wm-FPU-emu.                                              | +---------------------------------------------------------------------------*/#include <linux/signal.h>#include <asm/uaccess.h>#include <asm/desc.h>#include "fpu_system.h"#include "fpu_emu.h"#include "exception.h"#include "control_w.h"#include "status_w.h"#define __BAD__ FPU_illegal   /* Illegal on an 80486, causes SIGILL */#ifndef NO_UNDOC_CODE    /* Un-documented FPU op-codes supported by default. *//* WARNING: These codes are not documented by Intel in their 80486 manual   and may not work on FPU clones or later Intel FPUs. *//* Changes to support the un-doc codes provided by Linus Torvalds. */#define _d9_d8_ fstp_i    /* unofficial code (19) */#define _dc_d0_ fcom_st   /* unofficial code (14) */#define _dc_d8_ fcompst   /* unofficial code (1c) */#define _dd_c8_ fxch_i    /* unofficial code (0d) */#define _de_d0_ fcompst   /* unofficial code (16) */#define _df_c0_ ffreep    /* unofficial code (07) ffree + pop */#define _df_c8_ fxch_i    /* unofficial code (0f) */#define _df_d0_ fstp_i    /* unofficial code (17) */#define _df_d8_ fstp_i    /* unofficial code (1f) */static FUNC const st_instr_table[64] = {  fadd__,   fld_i_,     __BAD__, __BAD__, fadd_i,  ffree_,  faddp_,  _df_c0_,  fmul__,   fxch_i,     __BAD__, __BAD__, fmul_i,  _dd_c8_, fmulp_,  _df_c8_,  fcom_st,  fp_nop,     __BAD__, __BAD__, _dc_d0_, fst_i_,  _de_d0_, _df_d0_,  fcompst,  _d9_d8_,    __BAD__, __BAD__, _dc_d8_, fstp_i,  fcompp,  _df_d8_,  fsub__,   FPU_etc,    __BAD__, finit_,  fsubri,  fucom_,  fsubrp,  fstsw_,  fsubr_,   fconst,     fucompp, __BAD__, fsub_i,  fucomp,  fsubp_,  __BAD__,  fdiv__,   FPU_triga,  __BAD__, __BAD__, fdivri,  __BAD__, fdivrp,  __BAD__,  fdivr_,   FPU_trigb,  __BAD__, __BAD__, fdiv_i,  __BAD__, fdivp_,  __BAD__,};#else     /* Support only documented FPU op-codes */static FUNC const st_instr_table[64] = {  fadd__,   fld_i_,     __BAD__, __BAD__, fadd_i,  ffree_,  faddp_,  __BAD__,  fmul__,   fxch_i,     __BAD__, __BAD__, fmul_i,  __BAD__, fmulp_,  __BAD__,  fcom_st,  fp_nop,     __BAD__, __BAD__, __BAD__, fst_i_,  __BAD__, __BAD__,  fcompst,  __BAD__,    __BAD__, __BAD__, __BAD__, fstp_i,  fcompp,  __BAD__,  fsub__,   FPU_etc,    __BAD__, finit_,  fsubri,  fucom_,  fsubrp,  fstsw_,  fsubr_,   fconst,     fucompp, __BAD__, fsub_i,  fucomp,  fsubp_,  __BAD__,  fdiv__,   FPU_triga,  __BAD__, __BAD__, fdivri,  __BAD__, fdivrp,  __BAD__,  fdivr_,   FPU_trigb,  __BAD__, __BAD__, fdiv_i,  __BAD__, fdivp_,  __BAD__,};#endif NO_UNDOC_CODE#define _NONE_ 0   /* Take no special action */#define _REG0_ 1   /* Need to check for not empty st(0) */#define _REGI_ 2   /* Need to check for not empty st(0) and st(rm) */#define _REGi_ 0   /* Uses st(rm) */#define _PUSH_ 3   /* Need to check for space to push onto stack */#define _null_ 4   /* Function illegal or not implemented */#define _REGIi 5   /* Uses st(0) and st(rm), result to st(rm) */#define _REGIp 6   /* Uses st(0) and st(rm), result to st(rm) then pop */#define _REGIc 0   /* Compare st(0) and st(rm) */#define _REGIn 0   /* Uses st(0) and st(rm), but handle checks later */#ifndef NO_UNDOC_CODE/* Un-documented FPU op-codes supported by default. (see above) */static u_char const type_table[64] = {  _REGI_, _NONE_, _null_, _null_, _REGIi, _REGi_, _REGIp, _REGi_,  _REGI_, _REGIn, _null_, _null_, _REGIi, _REGI_, _REGIp, _REGI_,  _REGIc, _NONE_, _null_, _null_, _REGIc, _REG0_, _REGIc, _REG0_,  _REGIc, _REG0_, _null_, _null_, _REGIc, _REG0_, _REGIc, _REG0_,  _REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_,  _REGI_, _NONE_, _REGIc, _null_, _REGIi, _REGIc, _REGIp, _null_,  _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_,  _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_};#else     /* Support only documented FPU op-codes */static u_char const type_table[64] = {  _REGI_, _NONE_, _null_, _null_, _REGIi, _REGi_, _REGIp, _null_,  _REGI_, _REGIn, _null_, _null_, _REGIi, _null_, _REGIp, _null_,  _REGIc, _NONE_, _null_, _null_, _null_, _REG0_, _null_, _null_,  _REGIc, _null_, _null_, _null_, _null_, _REG0_, _REGIc, _null_,  _REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_,  _REGI_, _NONE_, _REGIc, _null_, _REGIi, _REGIc, _REGIp, _null_,  _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_,  _REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_};#endif NO_UNDOC_CODE#ifdef RE_ENTRANT_CHECKINGu_char emulating=0;#endif RE_ENTRANT_CHECKINGstatic int valid_prefix(u_char *Byte, u_char **fpu_eip,			overrides *override);asmlinkage void math_emulate(long arg){  u_char  FPU_modrm, byte1;  unsigned short code;  fpu_addr_modes addr_modes;  int unmasked;  FPU_REG loaded_data;  FPU_REG *st0_ptr;  u_char	  loaded_tag, st0_tag;  void *data_address;  struct address data_sel_off;  struct address entry_sel_off;  unsigned long code_base = 0;  unsigned long code_limit = 0;  /* Initialized to stop compiler warnings */  struct desc_struct code_descriptor;#ifdef RE_ENTRANT_CHECKING  if ( emulating )    {      printk("ERROR: wm-FPU-emu is not RE-ENTRANT!\n");    }  RE_ENTRANT_CHECK_ON;#endif RE_ENTRANT_CHECKING  if (!current->used_math)    {      finit();      current->used_math = 1;    }  SETUP_DATA_AREA(arg);  FPU_ORIG_EIP = FPU_EIP;  if ( (FPU_EFLAGS & 0x00020000) != 0 )    {      /* Virtual 8086 mode */      addr_modes.default_mode = VM86;      FPU_EIP += code_base = FPU_CS << 4;      code_limit = code_base + 0xffff;  /* Assumes code_base <= 0xffff0000 */    }  else if ( FPU_CS == __USER_CS && FPU_DS == __USER_DS )    {      addr_modes.default_mode = 0;    }  else if ( FPU_CS == __KERNEL_CS )    {      printk("math_emulate: %04x:%08lx\n",FPU_CS,FPU_EIP);      panic("Math emulation needed in kernel");    }  else    {      if ( (FPU_CS & 4) != 4 )   /* Must be in the LDT */	{	  /* Can only handle segmented addressing via the LDT	     for now, and it must be 16 bit */	  printk("FPU emulator: Unsupported addressing mode\n");	  math_abort(FPU_info, SIGILL);	}      if ( SEG_D_SIZE(code_descriptor = LDT_DESCRIPTOR(FPU_CS)) )	{	  /* The above test may be wrong, the book is not clear */	  /* Segmented 32 bit protected mode */	  addr_modes.default_mode = SEG32;	}      else	{	  /* 16 bit protected mode */	  addr_modes.default_mode = PM16;	}      FPU_EIP += code_base = SEG_BASE_ADDR(code_descriptor);      code_limit = code_base	+ (SEG_LIMIT(code_descriptor)+1) * SEG_GRANULARITY(code_descriptor)	  - 1;      if ( code_limit < code_base ) code_limit = 0xffffffff;    }  FPU_lookahead = 1;  if (current->ptrace & PT_PTRACED)    FPU_lookahead = 0;  if ( !valid_prefix(&byte1, (u_char **)&FPU_EIP,		     &addr_modes.override) )    {      RE_ENTRANT_CHECK_OFF;      printk("FPU emulator: Unknown prefix byte 0x%02x, probably due to\n"	     "FPU emulator: self-modifying code! (emulation impossible)\n",	     byte1);      RE_ENTRANT_CHECK_ON;      EXCEPTION(EX_INTERNAL|0x126);      math_abort(FPU_info,SIGILL);    }do_another_FPU_instruction:  no_ip_update = 0;  FPU_EIP++;  /* We have fetched the prefix and first code bytes. */  if ( addr_modes.default_mode )    {      /* This checks for the minimum instruction bytes.	 We also need to check any extra (address mode) code access. */      if ( FPU_EIP > code_limit )	math_abort(FPU_info,SIGSEGV);    }  if ( (byte1 & 0xf8) != 0xd8 )    {      if ( byte1 == FWAIT_OPCODE )	{	  if (partial_status & SW_Summary)	    goto do_the_FPU_interrupt;	  else	    goto FPU_fwait_done;	}#ifdef PARANOID      EXCEPTION(EX_INTERNAL|0x128);      math_abort(FPU_info,SIGILL);#endif PARANOID    }  RE_ENTRANT_CHECK_OFF;  FPU_code_verify_area(1);  FPU_get_user(FPU_modrm, (u_char *) FPU_EIP);  RE_ENTRANT_CHECK_ON;  FPU_EIP++;  if (partial_status & SW_Summary)    {      /* Ignore the error for now if the current instruction is a no-wait	 control instruction */      /* The 80486 manual contradicts itself on this topic,	 but a real 80486 uses the following instructions:	 fninit, fnstenv, fnsave, fnstsw, fnstenv, fnclex.       */      code = (FPU_modrm << 8) | byte1;      if ( ! ( (((code & 0xf803) == 0xe003) ||    /* fnclex, fninit, fnstsw */		(((code & 0x3003) == 0x3001) &&   /* fnsave, fnstcw, fnstenv,						     fnstsw */		 ((code & 0xc000) != 0xc000))) ) )	{	  /*	   *  We need to simulate the action of the kernel to FPU	   *  interrupts here.	   */	do_the_FPU_interrupt:	  FPU_EIP = FPU_ORIG_EIP;	/* Point to current FPU instruction. */	  RE_ENTRANT_CHECK_OFF;	  current->thread.trap_no = 16;	  current->thread.error_code = 0;	  send_sig(SIGFPE, current, 1);	  return;	}    }  entry_sel_off.offset = FPU_ORIG_EIP;  entry_sel_off.selector = FPU_CS;  entry_sel_off.opcode = (byte1 << 8) | FPU_modrm;  FPU_rm = FPU_modrm & 7;  if ( FPU_modrm < 0300 )    {      /* All of these instructions use the mod/rm byte to get a data address */      if ( (addr_modes.default_mode & SIXTEEN)	  ^ (addr_modes.override.address_size == ADDR_SIZE_PREFIX) )	data_address = FPU_get_address_16(FPU_modrm, &FPU_EIP, &data_sel_off,					  addr_modes);      else	data_address = FPU_get_address(FPU_modrm, &FPU_EIP, &data_sel_off,				       addr_modes);      if ( addr_modes.default_mode )	{	  if ( FPU_EIP-1 > code_limit )	    math_abort(FPU_info,SIGSEGV);	}      if ( !(byte1 & 1) )	{	  unsigned short status1 = partial_status;	  st0_ptr = &st(0);	  st0_tag = FPU_gettag0();	  /* Stack underflow has priority */	  if ( NOT_EMPTY_ST0 )	    {	      if ( addr_modes.default_mode & PROTECTED )		{		  /* This table works for 16 and 32 bit protected mode */		  if ( access_limit < data_sizes_16[(byte1 >> 1) & 3] )		    math_abort(FPU_info,SIGSEGV);		}	      unmasked = 0;  /* Do this here to stop compiler warnings. */	      switch ( (byte1 >> 1) & 3 )		{		case 0:		  unmasked = FPU_load_single((float *)data_address,					     &loaded_data);		  loaded_tag = unmasked & 0xff;		  unmasked &= ~0xff;		  break;		case 1:		  loaded_tag = FPU_load_int32((long *)data_address, &loaded_data);		  break;		case 2:		  unmasked = FPU_load_double((double *)data_address,					     &loaded_data);		  loaded_tag = unmasked & 0xff;		  unmasked &= ~0xff;		  break;		case 3:		default:  /* Used here to suppress gcc warnings. */		  loaded_tag = FPU_load_int16((short *)data_address, &loaded_data);		  break;		}	      /* No more access to user memory, it is safe		 to use static data now */	      /* NaN operands have the next priority. */	      /* We have to delay looking at st(0) until after		 loading the data, because that data might contain an SNaN */	      if ( ((st0_tag == TAG_Special) && isNaN(st0_ptr)) ||		  ((loaded_tag == TAG_Special) && isNaN(&loaded_data)) )		{		  /* Restore the status word; we might have loaded a		     denormal. */		  partial_status = status1;		  if ( (FPU_modrm & 0x30) == 0x10 )		    {		      /* fcom or fcomp */		      EXCEPTION(EX_Invalid);		      setcc(SW_C3 | SW_C2 | SW_C0);		      if ( (FPU_modrm & 0x08) && (control_word & CW_Invalid) )			FPU_pop();             /* fcomp, masked, so we pop. */		    }		  else		    {		      if ( loaded_tag == TAG_Special )

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -