⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 memory.c

📁 Linux内核源代码 为压缩文件 是<<Linux内核>>一书中的源代码
💻 C
字号:
/* *  linux/arch/m68k/mm/memory.c * *  Copyright (C) 1995  Hamish Macdonald */#include <linux/config.h>#include <linux/mm.h>#include <linux/kernel.h>#include <linux/string.h>#include <linux/types.h>#include <linux/malloc.h>#include <linux/init.h>#include <linux/pagemap.h>#include <asm/setup.h>#include <asm/segment.h>#include <asm/page.h>#include <asm/pgalloc.h>#include <asm/system.h>#include <asm/traps.h>#include <asm/io.h>#include <asm/machdep.h>#ifdef CONFIG_AMIGA#include <asm/amigahw.h>#endifstruct pgtable_cache_struct quicklists;void __bad_pte(pmd_t *pmd){	printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));	pmd_set(pmd, BAD_PAGETABLE);}void __bad_pmd(pgd_t *pgd){	printk("Bad pgd in pmd_alloc: %08lx\n", pgd_val(*pgd));	pgd_set(pgd, (pmd_t *)BAD_PAGETABLE);}pte_t *get_pte_slow(pmd_t *pmd, unsigned long offset){	pte_t *pte;	pte = (pte_t *) __get_free_page(GFP_KERNEL);	if (pmd_none(*pmd)) {		if (pte) {			clear_page(pte);			__flush_page_to_ram((unsigned long)pte);			flush_tlb_kernel_page((unsigned long)pte);			nocache_page((unsigned long)pte);			pmd_set(pmd, pte);			return pte + offset;		}		pmd_set(pmd, BAD_PAGETABLE);		return NULL;	}	free_page((unsigned long)pte);	if (pmd_bad(*pmd)) {		__bad_pte(pmd);		return NULL;	}	return (pte_t *)__pmd_page(*pmd) + offset;}pmd_t *get_pmd_slow(pgd_t *pgd, unsigned long offset){	pmd_t *pmd;	pmd = get_pointer_table();	if (pgd_none(*pgd)) {		if (pmd) {			pgd_set(pgd, pmd);			return pmd + offset;		}		pgd_set(pgd, (pmd_t *)BAD_PAGETABLE);		return NULL;	}	free_pointer_table(pmd);	if (pgd_bad(*pgd)) {		__bad_pmd(pgd);		return NULL;	}	return (pmd_t *)__pgd_page(*pgd) + offset;}/* ++andreas: {get,free}_pointer_table rewritten to use unused fields from   struct page instead of separately kmalloced struct.  Stolen from   arch/sparc/mm/srmmu.c ... */typedef struct list_head ptable_desc;static LIST_HEAD(ptable_list);#define PD_PTABLE(page) ((ptable_desc *)virt_to_page(page))#define PD_PAGE(ptable) (list_entry(ptable, struct page, list))#define PD_MARKBITS(dp) (*(unsigned char *)&PD_PAGE(dp)->index)#define PTABLE_SIZE (PTRS_PER_PMD * sizeof(pmd_t))void __init init_pointer_table(unsigned long ptable){	ptable_desc *dp;	unsigned long page = ptable & PAGE_MASK;	unsigned char mask = 1 << ((ptable - page)/PTABLE_SIZE);	dp = PD_PTABLE(page);	if (!(PD_MARKBITS(dp) & mask)) {		PD_MARKBITS(dp) = 0xff;		list_add(dp, &ptable_list);	}	PD_MARKBITS(dp) &= ~mask;#ifdef DEBUG	printk("init_pointer_table: %lx, %x\n", ptable, PD_MARKBITS(dp));#endif	/* unreserve the page so it's possible to free that page */	PD_PAGE(dp)->flags &= ~(1 << PG_reserved);	atomic_set(&PD_PAGE(dp)->count, 1);	return;}pmd_t *get_pointer_table (void){	ptable_desc *dp = ptable_list.next;	unsigned char mask = PD_MARKBITS (dp);	unsigned char tmp;	unsigned int off;	/*	 * For a pointer table for a user process address space, a	 * table is taken from a page allocated for the purpose.  Each	 * page can hold 8 pointer tables.  The page is remapped in	 * virtual address space to be noncacheable.	 */	if (mask == 0) {		unsigned long page;		ptable_desc *new;		if (!(page = get_free_page (GFP_KERNEL)))			return 0;		flush_tlb_kernel_page(page);		nocache_page (page);		new = PD_PTABLE(page);		PD_MARKBITS(new) = 0xfe;		list_add_tail(new, dp);		return (pmd_t *)page;	}	for (tmp = 1, off = 0; (mask & tmp) == 0; tmp <<= 1, off += PTABLE_SIZE)		;	PD_MARKBITS(dp) = mask & ~tmp;	if (!PD_MARKBITS(dp)) {		/* move to end of list */		list_del(dp);		list_add_tail(dp, &ptable_list);	}	return (pmd_t *) (page_address(PD_PAGE(dp)) + off);}int free_pointer_table (pmd_t *ptable){	ptable_desc *dp;	unsigned long page = (unsigned long)ptable & PAGE_MASK;	unsigned char mask = 1 << (((unsigned long)ptable - page)/PTABLE_SIZE);	dp = PD_PTABLE(page);	if (PD_MARKBITS (dp) & mask)		panic ("table already free!");	PD_MARKBITS (dp) |= mask;	if (PD_MARKBITS(dp) == 0xff) {		/* all tables in page are free, free page */		list_del(dp);		cache_page (page);		free_page (page);		return 1;	} else if (ptable_list.next != dp) {		/*		 * move this descriptor to the front of the list, since		 * it has one or more free tables.		 */		list_del(dp);		list_add(dp, &ptable_list);	}	return 0;}static unsigned long transp_transl_matches( unsigned long regval,					    unsigned long vaddr ){    unsigned long base, mask;    /* enabled? */    if (!(regval & 0x8000))	return( 0 );    if (CPU_IS_030) {	/* function code match? */	base = (regval >> 4) & 7;	mask = ~(regval & 7);	if (((SUPER_DATA ^ base) & mask) != 0)	    return 0;    }    else {	/* must not be user-only */	if ((regval & 0x6000) == 0)	    return( 0 );    }    /* address match? */    base = regval & 0xff000000;    mask = ~(regval << 8) & 0xff000000;    return (((unsigned long)vaddr ^ base) & mask) == 0;}#if DEBUG_INVALID_PTOVint mm_inv_cnt = 5;#endif#ifndef CONFIG_SINGLE_MEMORY_CHUNK/* * The following two routines map from a physical address to a kernel * virtual address and vice versa. */unsigned long mm_vtop(unsigned long vaddr){	int i=0;	unsigned long voff = (unsigned long)vaddr - PAGE_OFFSET;	do {		if (voff < m68k_memory[i].size) {#ifdef DEBUGPV			printk ("VTOP(%p)=%lx\n", vaddr,				m68k_memory[i].addr + voff);#endif			return m68k_memory[i].addr + voff;		}		voff -= m68k_memory[i].size;	} while (++i < m68k_num_memory);	return mm_vtop_fallback(vaddr);}#endif/* Separate function to make the common case faster (needs to save less   registers) */unsigned long mm_vtop_fallback(unsigned long vaddr){	/* not in one of the memory chunks; test for applying transparent	 * translation */	if (CPU_IS_030) {	    unsigned long ttreg;	    	    asm volatile( ".chip 68030\n\t"			  "pmove %/tt0,%0@\n\t"			  ".chip 68k"			  : : "a" (&ttreg) );	    if (transp_transl_matches( ttreg, vaddr ))		return (unsigned long)vaddr;	    asm volatile( ".chip 68030\n\t"			  "pmove %/tt1,%0@\n\t"			  ".chip 68k"			  : : "a" (&ttreg) );	    if (transp_transl_matches( ttreg, vaddr ))		return (unsigned long)vaddr;	}	else if (CPU_IS_040_OR_060) {	    unsigned long ttreg;	    	    asm volatile( ".chip 68040\n\t"			  "movec %%dtt0,%0\n\t"			  ".chip 68k"			  : "=d" (ttreg) );	    if (transp_transl_matches( ttreg, vaddr ))		return (unsigned long)vaddr;	    asm volatile( ".chip 68040\n\t"			  "movec %%dtt1,%0\n\t"			  ".chip 68k"			  : "=d" (ttreg) );	    if (transp_transl_matches( ttreg, vaddr ))		return (unsigned long)vaddr;	}	/* no match, too, so get the actual physical address from the MMU. */	if (CPU_IS_060) {	  mm_segment_t fs = get_fs();	  unsigned long  paddr;	  set_fs (MAKE_MM_SEG(SUPER_DATA));	  /* The PLPAR instruction causes an access error if the translation	   * is not possible. To catch this we use the same exception mechanism	   * as for user space accesses in <asm/uaccess.h>. */	  asm volatile (".chip 68060\n"			"1: plpar (%0)\n"			".chip 68k\n"			"2:\n"			".section .fixup,\"ax\"\n"			"   .even\n"			"3: lea -1,%0\n"			"   jra 2b\n"			".previous\n"			".section __ex_table,\"a\"\n"			"   .align 4\n"			"   .long 1b,3b\n"			".previous"			: "=a" (paddr)			: "0" (vaddr));	  set_fs (fs);	  return paddr;	} else if (CPU_IS_040) {	  unsigned long mmusr;	  mm_segment_t fs = get_fs();	  set_fs (MAKE_MM_SEG(SUPER_DATA));	  asm volatile (".chip 68040\n\t"			"ptestr (%1)\n\t"			"movec %%mmusr, %0\n\t"			".chip 68k"			: "=r" (mmusr)			: "a" (vaddr));	  set_fs (fs);	  if (mmusr & MMU_T_040) {	    return (unsigned long)vaddr;	/* Transparent translation */	  }	  if (mmusr & MMU_R_040)	    return (mmusr & PAGE_MASK) | ((unsigned long)vaddr & (PAGE_SIZE-1));	  printk("VTOP040: bad virtual address %lx (%lx)", vaddr, mmusr);	  return -1;	} else {	  volatile unsigned short temp;	  unsigned short mmusr;	  unsigned long *descaddr;	  asm volatile ("ptestr #5,%2@,#7,%0\n\t"			"pmove %/psr,%1@"			: "=a&" (descaddr)			: "a" (&temp), "a" (vaddr));	  mmusr = temp;	  if (mmusr & (MMU_I|MMU_B|MMU_L))	    printk("VTOP030: bad virtual address %lx (%x)\n", vaddr, mmusr);	  descaddr = phys_to_virt((unsigned long)descaddr);	  switch (mmusr & MMU_NUM) {	  case 1:	    return (*descaddr & 0xfe000000) | ((unsigned long)vaddr & 0x01ffffff);	  case 2:	    return (*descaddr & 0xfffc0000) | ((unsigned long)vaddr & 0x0003ffff);	  case 3:	    return (*descaddr & PAGE_MASK) | ((unsigned long)vaddr & (PAGE_SIZE-1));	  default:	    printk("VTOP: bad levels (%u) for virtual address %lx\n", 		   mmusr & MMU_NUM, vaddr);	  }	}	printk("VTOP: bad virtual address %lx\n", vaddr);	return -1;}#ifndef CONFIG_SINGLE_MEMORY_CHUNKunsigned long mm_ptov (unsigned long paddr){	int i = 0;	unsigned long poff, voff = PAGE_OFFSET;	do {		poff = paddr - m68k_memory[i].addr;		if (poff < m68k_memory[i].size) {#ifdef DEBUGPV			printk ("PTOV(%lx)=%lx\n", paddr, poff + voff);#endif			return poff + voff;		}		voff += m68k_memory[i].size;	} while (++i < m68k_num_memory);#if DEBUG_INVALID_PTOV	if (mm_inv_cnt > 0) {		mm_inv_cnt--;		printk("Invalid use of phys_to_virt(0x%lx) at 0x%p!\n",			paddr, __builtin_return_address(0));	}#endif	/*	 * assume that the kernel virtual address is the same as the	 * physical address.	 *	 * This should be reasonable in most situations:	 *  1) They shouldn't be dereferencing the virtual address	 *     unless they are sure that it is valid from kernel space.	 *  2) The only usage I see so far is converting a page table	 *     reference to some non-FASTMEM address space when freeing         *     mmaped "/dev/mem" pages.  These addresses are just passed	 *     to "free_page", which ignores addresses that aren't in	 *     the memory list anyway.	 *	 */#ifdef CONFIG_AMIGA	/*	 * if on an amiga and address is in first 16M, move it 	 * to the ZTWO_VADDR range	 */	if (MACH_IS_AMIGA && paddr < 16*1024*1024)		return ZTWO_VADDR(paddr);#endif	return -1;}#endif/* invalidate page in both caches */#define	clear040(paddr)					\	__asm__ __volatile__ ("nop\n\t"			\			      ".chip 68040\n\t"		\			      "cinvp %%bc,(%0)\n\t"	\			      ".chip 68k"		\			      : : "a" (paddr))/* invalidate page in i-cache */#define	cleari040(paddr)				\	__asm__ __volatile__ ("nop\n\t"			\			      ".chip 68040\n\t"		\			      "cinvp %%ic,(%0)\n\t"	\			      ".chip 68k"		\			      : : "a" (paddr))/* push page in both caches */#define	push040(paddr)					\	__asm__ __volatile__ ("nop\n\t"			\			      ".chip 68040\n\t"		\			      "cpushp %%bc,(%0)\n\t"	\			      ".chip 68k"		\			      : : "a" (paddr))/* push and invalidate page in both caches */#define	pushcl040(paddr)			\	do { push040(paddr);			\	     if (CPU_IS_060) clear040(paddr);	\	} while(0)/* push page in both caches, invalidate in i-cache */#define	pushcli040(paddr)			\	do { push040(paddr);			\	     if (CPU_IS_060) cleari040(paddr);	\	} while(0)/* * 040: Hit every page containing an address in the range paddr..paddr+len-1. * (Low order bits of the ea of a CINVP/CPUSHP are "don't care"s). * Hit every page until there is a page or less to go. Hit the next page, * and the one after that if the range hits it. *//* ++roman: A little bit more care is required here: The CINVP instruction * invalidates cache entries WITHOUT WRITING DIRTY DATA BACK! So the beginning * and the end of the region must be treated differently if they are not * exactly at the beginning or end of a page boundary. Else, maybe too much * data becomes invalidated and thus lost forever. CPUSHP does what we need: * it invalidates the page after pushing dirty data to memory. (Thanks to Jes * for discovering the problem!) *//* ... but on the '060, CPUSH doesn't invalidate (for us, since we have set * the DPI bit in the CACR; would it cause problems with temporarily changing * this?). So we have to push first and then additionally to invalidate. *//* * cache_clear() semantics: Clear any cache entries for the area in question, * without writing back dirty entries first. This is useful if the data will * be overwritten anyway, e.g. by DMA to memory. The range is defined by a * _physical_ address. */void cache_clear (unsigned long paddr, int len){    if (CPU_IS_040_OR_060) {	int tmp;	/*	 * We need special treatment for the first page, in case it	 * is not page-aligned. Page align the addresses to work	 * around bug I17 in the 68060.	 */	if ((tmp = -paddr & (PAGE_SIZE - 1))) {	    pushcl040(paddr & PAGE_MASK);	    if ((len -= tmp) <= 0)		return;	    paddr += tmp;	}	tmp = PAGE_SIZE;	paddr &= PAGE_MASK;	while ((len -= tmp) >= 0) {	    clear040(paddr);	    paddr += tmp;	}	if ((len += tmp))	    /* a page boundary gets crossed at the end */	    pushcl040(paddr);    }    else /* 68030 or 68020 */	asm volatile ("movec %/cacr,%/d0\n\t"		      "oriw %0,%/d0\n\t"		      "movec %/d0,%/cacr"		      : : "i" (FLUSH_I_AND_D)		      : "d0");#ifdef CONFIG_M68K_L2_CACHE    if(mach_l2_flush)    	mach_l2_flush(0);#endif}/* * cache_push() semantics: Write back any dirty cache data in the given area, * and invalidate the range in the instruction cache. It needs not (but may) * invalidate those entries also in the data cache. The range is defined by a * _physical_ address. */void cache_push (unsigned long paddr, int len){    if (CPU_IS_040_OR_060) {	int tmp = PAGE_SIZE;	/*         * on 68040 or 68060, push cache lines for pages in the range;	 * on the '040 this also invalidates the pushed lines, but not on	 * the '060!	 */	len += paddr & (PAGE_SIZE - 1);	/*	 * Work around bug I17 in the 68060 affecting some instruction	 * lines not being invalidated properly.	 */	paddr &= PAGE_MASK;	do {	    pushcli040(paddr);	    paddr += tmp;	} while ((len -= tmp) > 0);    }    /*     * 68030/68020 have no writeback cache. On the other hand,     * cache_push is actually a superset of cache_clear (the lines     * get written back and invalidated), so we should make sure     * to perform the corresponding actions. After all, this is getting     * called in places where we've just loaded code, or whatever, so     * flushing the icache is appropriate; flushing the dcache shouldn't     * be required.     */    else /* 68030 or 68020 */	asm volatile ("movec %/cacr,%/d0\n\t"		      "oriw %0,%/d0\n\t"		      "movec %/d0,%/cacr"		      : : "i" (FLUSH_I)		      : "d0");#ifdef CONFIG_M68K_L2_CACHE    if(mach_l2_flush)    	mach_l2_flush(1);#endif}#undef clear040#undef cleari040#undef push040#undef pushcl040#undef pushcli040#ifndef CONFIG_SINGLE_MEMORY_CHUNKint mm_end_of_chunk (unsigned long addr, int len){	int i;	for (i = 0; i < m68k_num_memory; i++)		if (m68k_memory[i].addr + m68k_memory[i].size == addr + len)			return 1;	return 0;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -