📄 init.c
字号:
/* * Make sure that the initrd is within a valid area of * memory. */ if (initrd_start) { unsigned long phys_initrd_start, phys_initrd_end; unsigned int i; phys_initrd_start = __pa(initrd_start); phys_initrd_end = __pa(initrd_end); for (i = 0; i < mi->nr_banks; i++) { unsigned long bank_end; bank_end = mi->bank[i].start + mi->bank[i].size; if (mi->bank[i].start <= phys_initrd_start && phys_initrd_end <= bank_end) initrd_node = mi->bank[i].node; } } if (initrd_node == -1) { printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond " "physical memory - disabling initrd\n", initrd_start, initrd_end); initrd_start = initrd_end = 0; }#endif return initrd_node;}/* * Reserve the various regions of node 0 */static __init void reserve_node_zero(unsigned int bootmap_pfn, unsigned int bootmap_pages){ pg_data_t *pgdat = NODE_DATA(0); /* * Register the kernel text and data with bootmem. * Note that this can only be in node 0. */ reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);#ifdef CONFIG_CPU_32 /* * Reserve the page tables. These are already in use, * and can only be in node 0. */ reserve_bootmem_node(pgdat, __pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(void *));#endif /* * And don't forget to reserve the allocator bitmap, * which will be freed later. */ reserve_bootmem_node(pgdat, bootmap_pfn << PAGE_SHIFT, bootmap_pages << PAGE_SHIFT); /* * Hmm... This should go elsewhere, but we really really * need to stop things allocating the low memory; we need * a better implementation of GFP_DMA which does not assume * that DMA-able memory starts at zero. */ if (machine_is_integrator()) reserve_bootmem_node(pgdat, 0, __pa(swapper_pg_dir)); /* * These should likewise go elsewhere. They pre-reserve * the screen memory region at the start of main system * memory. */ if (machine_is_archimedes() || machine_is_a5k()) reserve_bootmem_node(pgdat, 0x02000000, 0x00080000); if (machine_is_p720t()) reserve_bootmem_node(pgdat, 0xc0000000, 0x00014000);}/* * Register all available RAM in this node with the bootmem allocator. */static inline void free_bootmem_node_bank(int node, struct meminfo *mi){ pg_data_t *pgdat = NODE_DATA(node); int bank; for (bank = 0; bank < mi->nr_banks; bank++) if (mi->bank[bank].node == node) free_bootmem_node(pgdat, mi->bank[bank].start, mi->bank[bank].size);}/* * Initialise the bootmem allocator for all nodes. This is called * early during the architecture specific initialisation. */void __init bootmem_init(struct meminfo *mi){ struct node_info node_info[NR_NODES], *np = node_info; unsigned int bootmap_pages, bootmap_pfn, map_pg; int node, initrd_node; bootmap_pages = find_memend_and_nodes(mi, np); bootmap_pfn = find_bootmap_pfn(0, mi, bootmap_pages); initrd_node = check_initrd(mi); map_pg = bootmap_pfn; for (node = 0; node < numnodes; node++, np++) { /* * If there are no pages in this node, ignore it. * Note that node 0 must always have some pages. */ if (np->end == 0) { if (node == 0) BUG(); continue; } /* * Initialise the bootmem allocator. */ init_bootmem_node(NODE_DATA(node), map_pg, np->start, np->end); free_bootmem_node_bank(node, mi); map_pg += np->bootmap_pages; /* * If this is node 0, we need to reserve some areas ASAP - * we may use bootmem on node 0 to setup the other nodes. */ if (node == 0) reserve_node_zero(bootmap_pfn, bootmap_pages); }#ifdef CONFIG_BLK_DEV_INITRD if (initrd_node >= 0) reserve_bootmem_node(NODE_DATA(initrd_node), __pa(initrd_start), initrd_end - initrd_start);#endif if (map_pg != bootmap_pfn + bootmap_pages) BUG();}/* * paging_init() sets up the page tables, initialises the zone memory * maps, and sets up the zero page, bad page and bad page tables. */void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc){ void *zero_page, *bad_page, *bad_table; int node; memcpy(&meminfo, mi, sizeof(meminfo)); /* * allocate what we need for the bad pages. * note that we count on this going ok. */ zero_page = alloc_bootmem_low_pages(PAGE_SIZE); bad_page = alloc_bootmem_low_pages(PAGE_SIZE); bad_table = alloc_bootmem_low_pages(TABLE_SIZE); /* * initialise the page tables. */ memtable_init(mi); if (mdesc->map_io) mdesc->map_io(); flush_tlb_all(); /* * initialise the zones within each node */ for (node = 0; node < numnodes; node++) { unsigned long zone_size[MAX_NR_ZONES]; unsigned long zhole_size[MAX_NR_ZONES]; struct bootmem_data *bdata; pg_data_t *pgdat; int i; /* * Initialise the zone size information. */ for (i = 0; i < MAX_NR_ZONES; i++) { zone_size[i] = 0; zhole_size[i] = 0; } pgdat = NODE_DATA(node); bdata = pgdat->bdata; /* * The size of this node has already been determined. * If we need to do anything fancy with the allocation * of this memory to the zones, now is the time to do * it. */ zone_size[0] = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT); /* * For each bank in this node, calculate the size of the * holes. holes = node_size - sum(bank_sizes_in_node) */ zhole_size[0] = zone_size[0]; for (i = 0; i < mi->nr_banks; i++) { if (mi->bank[i].node != node) continue; zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT; } free_area_init_node(node, pgdat, 0, zone_size, bdata->node_boot_start, zhole_size); } /* * finish off the bad pages once * the mem_map is initialised */ memzero(zero_page, PAGE_SIZE); memzero(bad_page, PAGE_SIZE); empty_zero_page = virt_to_page(zero_page); empty_bad_page = virt_to_page(bad_page); empty_bad_pte_table = ((pte_t *)bad_table) + TABLE_OFFSET;}/* * mem_init() marks the free areas in the mem_map and tells us how much * memory is free. This is done after various parts of the system have * claimed their memory after the kernel image. */void __init mem_init(void){ unsigned int codepages, datapages, initpages; int i, node; codepages = &_etext - &_text; datapages = &_end - &_etext; initpages = &__init_end - &__init_begin; high_memory = (void *)__va(meminfo.end); max_mapnr = virt_to_page(high_memory) - mem_map; /* * We may have non-contiguous memory. */ if (meminfo.nr_banks != 1) create_memmap_holes(&meminfo); /* this will put all unused low memory onto the freelists */ for (node = 0; node < numnodes; node++) totalram_pages += free_all_bootmem_node(NODE_DATA(node)); /* * Since our memory may not be contiguous, calculate the * real number of pages we have in this system */ printk(KERN_INFO "Memory:"); num_physpages = 0; for (i = 0; i < meminfo.nr_banks; i++) { num_physpages += meminfo.bank[i].size >> PAGE_SHIFT; printk(" %ldMB", meminfo.bank[i].size >> 20); } printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); printk(KERN_NOTICE "Memory: %luKB available (%dK code, " "%dK data, %dK init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), codepages >> 10, datapages >> 10, initpages >> 10); if (PAGE_SIZE >= 16384 && num_physpages <= 128) { extern int sysctl_overcommit_memory; /* * On a machine this small we won't get * anywhere without overcommit, so turn * it on by default. */ sysctl_overcommit_memory = 1; }}static inline void free_area(unsigned long addr, unsigned long end, char *s){ unsigned int size = (end - addr) >> 10; for (; addr < end; addr += PAGE_SIZE) { struct page *page = virt_to_page(addr); ClearPageReserved(page); set_page_count(page, 1); free_page(addr); totalram_pages++; } if (size) printk("Freeing %s memory: %dK\n", s, size);}void free_initmem(void){ if (!machine_is_integrator()) { free_area((unsigned long)(&__init_begin), (unsigned long)(&__init_end), "init"); }}#ifdef CONFIG_BLK_DEV_INITRDstatic int keep_initrd;void free_initrd_mem(unsigned long start, unsigned long end){ if (!keep_initrd) free_area(start, end, "initrd");}static int __init keepinitrd_setup(char *__unused){ keep_initrd = 1; return 1;}__setup("keepinitrd", keepinitrd_setup);#endifvoid si_meminfo(struct sysinfo *val){ val->totalram = totalram_pages; val->sharedram = 0; val->freeram = nr_free_pages(); val->bufferram = atomic_read(&buffermem_pages); val->totalhigh = 0; val->freehigh = 0; val->mem_unit = PAGE_SIZE;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -