📄 init.c
字号:
/* * Initialize MMU support. * * Copyright (C) 1998-2000 Hewlett-Packard Co * Copyright (C) 1998-2000 David Mosberger-Tang <davidm@hpl.hp.com> */#include <linux/config.h>#include <linux/kernel.h>#include <linux/init.h>#include <linux/bootmem.h>#include <linux/mm.h>#include <linux/reboot.h>#include <linux/slab.h>#include <linux/swap.h>#include <asm/bitops.h>#include <asm/dma.h>#include <asm/efi.h>#include <asm/ia32.h>#include <asm/io.h>#include <asm/machvec.h>#include <asm/pgalloc.h>#include <asm/sal.h>#include <asm/system.h>/* References to section boundaries: */extern char _stext, _etext, _edata, __init_begin, __init_end;/* * These are allocated in head.S so that we get proper page alignment. * If you change the size of these then change head.S as well. */extern char empty_bad_page[PAGE_SIZE];extern pmd_t empty_bad_pmd_table[PTRS_PER_PMD];extern pte_t empty_bad_pte_table[PTRS_PER_PTE];extern void ia64_tlb_init (void);static unsigned long totalram_pages;/* * Fill in empty_bad_pmd_table with entries pointing to * empty_bad_pte_table and return the address of this PMD table. */static pmd_t *get_bad_pmd_table (void){ pmd_t v; int i; pmd_set(&v, empty_bad_pte_table); for (i = 0; i < PTRS_PER_PMD; ++i) empty_bad_pmd_table[i] = v; return empty_bad_pmd_table;}/* * Fill in empty_bad_pte_table with PTEs pointing to empty_bad_page * and return the address of this PTE table. */static pte_t *get_bad_pte_table (void){ pte_t v; int i; set_pte(&v, pte_mkdirty(mk_pte_phys(__pa(empty_bad_page), PAGE_SHARED))); for (i = 0; i < PTRS_PER_PTE; ++i) empty_bad_pte_table[i] = v; return empty_bad_pte_table;}void__handle_bad_pgd (pgd_t *pgd){ pgd_ERROR(*pgd); pgd_set(pgd, get_bad_pmd_table());}void__handle_bad_pmd (pmd_t *pmd){ pmd_ERROR(*pmd); pmd_set(pmd, get_bad_pte_table());}/* * Allocate and initialize an L3 directory page and set * the L2 directory entry PMD to the newly allocated page. */pte_t*get_pte_slow (pmd_t *pmd, unsigned long offset){ pte_t *pte; pte = (pte_t *) __get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (pte) { /* everything A-OK */ clear_page(pte); pmd_set(pmd, pte); return pte + offset; } pmd_set(pmd, get_bad_pte_table()); return NULL; } free_page((unsigned long) pte); if (pmd_bad(*pmd)) { __handle_bad_pmd(pmd); return NULL; } return (pte_t *) pmd_page(*pmd) + offset;}intdo_check_pgt_cache (int low, int high){ int freed = 0; if (pgtable_cache_size > high) { do { if (pgd_quicklist) free_page((unsigned long)get_pgd_fast()), ++freed; if (pmd_quicklist) free_page((unsigned long)get_pmd_fast()), ++freed; if (pte_quicklist) free_page((unsigned long)get_pte_fast()), ++freed; } while (pgtable_cache_size > low); } return freed;}/* * This performs some platform-dependent address space initialization. * On IA-64, we want to setup the VM area for the register backing * store (which grows upwards) and install the gateway page which is * used for signal trampolines, etc. */voidia64_init_addr_space (void){ struct vm_area_struct *vma; /* * If we're out of memory and kmem_cache_alloc() returns NULL, * we simply ignore the problem. When the process attempts to * write to the register backing store for the first time, it * will get a SEGFAULT in this case. */ vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); if (vma) { vma->vm_mm = current->mm; vma->vm_start = IA64_RBS_BOT; vma->vm_end = vma->vm_start + PAGE_SIZE; vma->vm_page_prot = PAGE_COPY; vma->vm_flags = VM_READ|VM_WRITE|VM_MAYREAD|VM_MAYWRITE|VM_GROWSUP; vma->vm_ops = NULL; vma->vm_pgoff = 0; vma->vm_file = NULL; vma->vm_private_data = NULL; insert_vm_struct(current->mm, vma); }}voidfree_initmem (void){ unsigned long addr; addr = (unsigned long) &__init_begin; for (; addr < (unsigned long) &__init_end; addr += PAGE_SIZE) { clear_bit(PG_reserved, &virt_to_page(addr)->flags); set_page_count(virt_to_page(addr), 1); free_page(addr); ++totalram_pages; } printk ("Freeing unused kernel memory: %ldkB freed\n", (&__init_end - &__init_begin) >> 10);}voidfree_initrd_mem(unsigned long start, unsigned long end){ /* * EFI uses 4KB pages while the kernel can use 4KB or bigger. * Thus EFI and the kernel may have different page sizes. It is * therefore possible to have the initrd share the same page as * the end of the kernel (given current setup). * * To avoid freeing/using the wrong page (kernel sized) we: * - align up the beginning of initrd * - keep the end untouched * * | | * |=============| a000 * | | * | | * | | 9000 * |/////////////| * |/////////////| * |=============| 8000 * |///INITRD////| * |/////////////| * |/////////////| 7000 * | | * |KKKKKKKKKKKKK| * |=============| 6000 * |KKKKKKKKKKKKK| * |KKKKKKKKKKKKK| * K=kernel using 8KB pages * * In this example, we must free page 8000 ONLY. So we must align up * initrd_start and keep initrd_end as is. */ start = PAGE_ALIGN(start); if (start < end) printk ("Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); for (; start < end; start += PAGE_SIZE) { clear_bit(PG_reserved, &virt_to_page(start)->flags); set_page_count(virt_to_page(start), 1); free_page(start); ++totalram_pages; }}voidsi_meminfo (struct sysinfo *val){ val->totalram = totalram_pages; val->sharedram = 0; val->freeram = nr_free_pages(); val->bufferram = atomic_read(&buffermem_pages); val->totalhigh = 0; val->freehigh = 0; val->mem_unit = PAGE_SIZE; return;}voidshow_mem (void){ int i, total = 0, reserved = 0; int shared = 0, cached = 0; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6dkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); i = max_mapnr; while (i-- > 0) { total++; if (PageReserved(mem_map+i)) reserved++; else if (PageSwapCache(mem_map+i)) cached++; else if (page_count(mem_map + i)) shared += page_count(mem_map + i) - 1; } printk("%d pages of RAM\n", total); printk("%d reserved pages\n", reserved); printk("%d pages shared\n", shared); printk("%d pages swap cached\n", cached); printk("%ld pages in page table cache\n", pgtable_cache_size); show_buffers();}/* * This is like put_dirty_page() but installs a clean page with PAGE_GATE protection * (execute-only, typically). */struct page *put_gate_page (struct page *page, unsigned long address){ pgd_t *pgd; pmd_t *pmd; pte_t *pte; if (!PageReserved(page)) printk("put_gate_page: gate page at 0x%p not in reserved memory\n", page_address(page)); pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ pmd = pmd_alloc(pgd, address); if (!pmd) { __free_page(page); panic("Out of memory."); return 0; } pte = pte_alloc(pmd, address); if (!pte) { __free_page(page); panic("Out of memory."); return 0; } if (!pte_none(*pte)) { pte_ERROR(*pte); __free_page(page); return 0; } flush_page_to_ram(page); set_pte(pte, mk_pte(page, PAGE_GATE)); /* no need for flush_tlb */ return page;}void __initia64_rid_init (void){ unsigned long flags, rid, pta, impl_va_bits;#ifdef CONFIG_DISABLE_VHPT# define VHPT_ENABLE_BIT 0#else# define VHPT_ENABLE_BIT 1#endif /* Set up the kernel identity mappings (regions 6 & 7) and the vmalloc area (region 5): */ ia64_clear_ic(flags); rid = ia64_rid(IA64_REGION_ID_KERNEL, __IA64_UNCACHED_OFFSET); ia64_set_rr(__IA64_UNCACHED_OFFSET, (rid << 8) | (_PAGE_SIZE_256M << 2)); rid = ia64_rid(IA64_REGION_ID_KERNEL, PAGE_OFFSET); ia64_set_rr(PAGE_OFFSET, (rid << 8) | (_PAGE_SIZE_256M << 2)); rid = ia64_rid(IA64_REGION_ID_KERNEL, VMALLOC_START); ia64_set_rr(VMALLOC_START, (rid << 8) | (PAGE_SHIFT << 2) | 1); __restore_flags(flags); /* * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped * address space. The IA-64 architecture guarantees that at least 50 bits of * virtual address space are implemented but if we pick a large enough page size * (e.g., 64KB), the mapped address space is big enough that it will overlap with * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a * problem in practice. Alternatively, we could truncate the top of the mapped * address space to not permit mappings that would overlap with the VMLPT. * --davidm 00/12/06 */# define pte_bits 3# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) /* * The virtual page table has to cover the entire implemented address space within * a region even though not all of this space may be mappable. The reason for * this is that the Access bit and Dirty bit fault handlers perform * non-speculative accesses to the virtual page table, so the address range of the * virtual page table itself needs to be covered by virtual page table. */# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)# define POW2(n) (1ULL << (n)) impl_va_bits = ffz(~my_cpu_data.unimpl_va_mask); if (impl_va_bits < 51 || impl_va_bits > 61) panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); /* place the VMLPT at the end of each page-table mapped region: */ pta = POW2(61) - POW2(vmlpt_bits); if (POW2(mapped_space_bits) >= pta) panic("mm/init: overlap between virtually mapped linear page table and " "mapped kernel space!"); /* * Set the (virtually mapped linear) page table address. Bit * 8 selects between the short and long format, bits 2-7 the * size of the table, and bit 0 whether the VHPT walker is * enabled. */ ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);}/* * Set up the page tables. */voidpaging_init (void){ unsigned long max_dma, zones_size[MAX_NR_ZONES]; clear_page((void *) ZERO_PAGE_ADDR); /* initialize mem_map[] */ memset(zones_size, 0, sizeof(zones_size)); max_dma = (PAGE_ALIGN(MAX_DMA_ADDRESS) >> PAGE_SHIFT); if (max_low_pfn < max_dma) zones_size[ZONE_DMA] = max_low_pfn; else { zones_size[ZONE_DMA] = max_dma; zones_size[ZONE_NORMAL] = max_low_pfn - max_dma; } free_area_init(zones_size);}static intcount_pages (u64 start, u64 end, void *arg){ unsigned long *count = arg; *count += (end - start) >> PAGE_SHIFT; return 0;}static intcount_reserved_pages (u64 start, u64 end, void *arg){ unsigned long num_reserved = 0; unsigned long *count = arg; struct page *pg; for (pg = virt_to_page(start); pg < virt_to_page(end); ++pg) if (PageReserved(pg)) ++num_reserved; *count += num_reserved; return 0;}voidmem_init (void){ extern char __start_gate_section[]; long reserved_pages, codesize, datasize, initsize;#ifdef CONFIG_PCI /* * This needs to be called _after_ the command line has been parsed but _before_ * any drivers that may need the PCI DMA interface are initialized or bootmem has * been freed. */ platform_pci_dma_init();#endif if (!mem_map) BUG(); num_physpages = 0; efi_memmap_walk(count_pages, &num_physpages); max_mapnr = max_low_pfn; high_memory = __va(max_low_pfn * PAGE_SIZE); totalram_pages += free_all_bootmem(); reserved_pages = 0; efi_memmap_walk(count_reserved_pages, &reserved_pages); codesize = (unsigned long) &_etext - (unsigned long) &_stext; datasize = (unsigned long) &_edata - (unsigned long) &_etext; initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; printk("Memory: %luk/%luk available (%luk code, %luk reserved, %luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10), max_mapnr << (PAGE_SHIFT - 10), codesize >> 10, reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); /* install the gate page in the global page table: */ put_gate_page(virt_to_page(__start_gate_section), GATE_ADDR);#ifdef CONFIG_IA32_SUPPORT ia32_gdt_init();#endif}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -