⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 init.c

📁 Linux内核源代码 为压缩文件 是<<Linux内核>>一书中的源代码
💻 C
字号:
/* * Initialize MMU support. * * Copyright (C) 1998-2000 Hewlett-Packard Co * Copyright (C) 1998-2000 David Mosberger-Tang <davidm@hpl.hp.com> */#include <linux/config.h>#include <linux/kernel.h>#include <linux/init.h>#include <linux/bootmem.h>#include <linux/mm.h>#include <linux/reboot.h>#include <linux/slab.h>#include <linux/swap.h>#include <asm/bitops.h>#include <asm/dma.h>#include <asm/efi.h>#include <asm/ia32.h>#include <asm/io.h>#include <asm/machvec.h>#include <asm/pgalloc.h>#include <asm/sal.h>#include <asm/system.h>/* References to section boundaries: */extern char _stext, _etext, _edata, __init_begin, __init_end;/* * These are allocated in head.S so that we get proper page alignment. * If you change the size of these then change head.S as well. */extern char empty_bad_page[PAGE_SIZE];extern pmd_t empty_bad_pmd_table[PTRS_PER_PMD];extern pte_t empty_bad_pte_table[PTRS_PER_PTE];extern void ia64_tlb_init (void);static unsigned long totalram_pages;/* * Fill in empty_bad_pmd_table with entries pointing to * empty_bad_pte_table and return the address of this PMD table. */static pmd_t *get_bad_pmd_table (void){	pmd_t v;	int i;	pmd_set(&v, empty_bad_pte_table);	for (i = 0; i < PTRS_PER_PMD; ++i)		empty_bad_pmd_table[i] = v;	return empty_bad_pmd_table;}/* * Fill in empty_bad_pte_table with PTEs pointing to empty_bad_page * and return the address of this PTE table. */static pte_t *get_bad_pte_table (void){	pte_t v;	int i;	set_pte(&v, pte_mkdirty(mk_pte_phys(__pa(empty_bad_page), PAGE_SHARED)));	for (i = 0; i < PTRS_PER_PTE; ++i)		empty_bad_pte_table[i] = v;	return empty_bad_pte_table;}void__handle_bad_pgd (pgd_t *pgd){	pgd_ERROR(*pgd);	pgd_set(pgd, get_bad_pmd_table());}void__handle_bad_pmd (pmd_t *pmd){	pmd_ERROR(*pmd);	pmd_set(pmd, get_bad_pte_table());}/* * Allocate and initialize an L3 directory page and set * the L2 directory entry PMD to the newly allocated page. */pte_t*get_pte_slow (pmd_t *pmd, unsigned long offset){	pte_t *pte;	pte = (pte_t *) __get_free_page(GFP_KERNEL);	if (pmd_none(*pmd)) {		if (pte) {			/* everything A-OK */			clear_page(pte);			pmd_set(pmd, pte);			return pte + offset;		}		pmd_set(pmd, get_bad_pte_table());		return NULL;	}	free_page((unsigned long) pte);	if (pmd_bad(*pmd)) {		__handle_bad_pmd(pmd);		return NULL;	}	return (pte_t *) pmd_page(*pmd) + offset;}intdo_check_pgt_cache (int low, int high){	int freed = 0;        if (pgtable_cache_size > high) {                do {                        if (pgd_quicklist)                                free_page((unsigned long)get_pgd_fast()), ++freed;                        if (pmd_quicklist)                                free_page((unsigned long)get_pmd_fast()), ++freed;                        if (pte_quicklist)                                free_page((unsigned long)get_pte_fast()), ++freed;                } while (pgtable_cache_size > low);        }        return freed;}/* * This performs some platform-dependent address space initialization. * On IA-64, we want to setup the VM area for the register backing * store (which grows upwards) and install the gateway page which is * used for signal trampolines, etc. */voidia64_init_addr_space (void){	struct vm_area_struct *vma;	/*	 * If we're out of memory and kmem_cache_alloc() returns NULL,	 * we simply ignore the problem.  When the process attempts to	 * write to the register backing store for the first time, it	 * will get a SEGFAULT in this case.	 */	vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);	if (vma) {		vma->vm_mm = current->mm;		vma->vm_start = IA64_RBS_BOT;		vma->vm_end = vma->vm_start + PAGE_SIZE;		vma->vm_page_prot = PAGE_COPY;		vma->vm_flags = VM_READ|VM_WRITE|VM_MAYREAD|VM_MAYWRITE|VM_GROWSUP;		vma->vm_ops = NULL;		vma->vm_pgoff = 0;		vma->vm_file = NULL;		vma->vm_private_data = NULL;		insert_vm_struct(current->mm, vma);	}}voidfree_initmem (void){	unsigned long addr;	addr = (unsigned long) &__init_begin;	for (; addr < (unsigned long) &__init_end; addr += PAGE_SIZE) {		clear_bit(PG_reserved, &virt_to_page(addr)->flags);		set_page_count(virt_to_page(addr), 1);		free_page(addr);		++totalram_pages;	}	printk ("Freeing unused kernel memory: %ldkB freed\n",		(&__init_end - &__init_begin) >> 10);}voidfree_initrd_mem(unsigned long start, unsigned long end){	/*	 * EFI uses 4KB pages while the kernel can use 4KB  or bigger.	 * Thus EFI and the kernel may have different page sizes. It is 	 * therefore possible to have the initrd share the same page as 	 * the end of the kernel (given current setup). 	 *	 * To avoid freeing/using the wrong page (kernel sized) we:	 * 	- align up the beginning of initrd	 *	- keep the end untouched	 *	 *  |             |	 *  |=============| a000	 *  |             |	 *  |             |	 *  |             | 9000	 *  |/////////////| 	 *  |/////////////| 	 *  |=============| 8000	 *  |///INITRD////|	 *  |/////////////|	 *  |/////////////| 7000	 *  |             |	 *  |KKKKKKKKKKKKK|	 *  |=============| 6000	 *  |KKKKKKKKKKKKK|	 *  |KKKKKKKKKKKKK| 	 *  K=kernel using 8KB pages	 * 	 * In this example, we must free page 8000 ONLY. So we must align up	 * initrd_start and keep initrd_end as is.	 */	start = PAGE_ALIGN(start);	if (start < end)		printk ("Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);	for (; start < end; start += PAGE_SIZE) {		clear_bit(PG_reserved, &virt_to_page(start)->flags);		set_page_count(virt_to_page(start), 1);		free_page(start);		++totalram_pages;	}}voidsi_meminfo (struct sysinfo *val){	val->totalram = totalram_pages;	val->sharedram = 0;	val->freeram = nr_free_pages();	val->bufferram = atomic_read(&buffermem_pages);	val->totalhigh = 0;	val->freehigh = 0;	val->mem_unit = PAGE_SIZE;	return;}voidshow_mem (void){	int i, total = 0, reserved = 0;	int shared = 0, cached = 0;	printk("Mem-info:\n");	show_free_areas();	printk("Free swap:       %6dkB\n", nr_swap_pages<<(PAGE_SHIFT-10));	i = max_mapnr;	while (i-- > 0) {		total++;		if (PageReserved(mem_map+i))			reserved++;		else if (PageSwapCache(mem_map+i))			cached++;		else if (page_count(mem_map + i))			shared += page_count(mem_map + i) - 1;	}	printk("%d pages of RAM\n", total);	printk("%d reserved pages\n", reserved);	printk("%d pages shared\n", shared);	printk("%d pages swap cached\n", cached);	printk("%ld pages in page table cache\n", pgtable_cache_size);	show_buffers();}/* * This is like put_dirty_page() but installs a clean page with PAGE_GATE protection * (execute-only, typically). */struct page *put_gate_page (struct page *page, unsigned long address){	pgd_t *pgd;	pmd_t *pmd;	pte_t *pte;	if (!PageReserved(page))		printk("put_gate_page: gate page at 0x%p not in reserved memory\n",		       page_address(page));	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */	pmd = pmd_alloc(pgd, address);	if (!pmd) {		__free_page(page);		panic("Out of memory.");		return 0;	}	pte = pte_alloc(pmd, address);	if (!pte) {		__free_page(page);		panic("Out of memory.");		return 0;	}	if (!pte_none(*pte)) {		pte_ERROR(*pte);		__free_page(page);		return 0;	}	flush_page_to_ram(page);	set_pte(pte, mk_pte(page, PAGE_GATE));	/* no need for flush_tlb */	return page;}void __initia64_rid_init (void){	unsigned long flags, rid, pta, impl_va_bits;#ifdef CONFIG_DISABLE_VHPT#	define VHPT_ENABLE_BIT	0#else#	define VHPT_ENABLE_BIT	1#endif	/* Set up the kernel identity mappings (regions 6 & 7) and the vmalloc area (region 5): */	ia64_clear_ic(flags);	rid = ia64_rid(IA64_REGION_ID_KERNEL, __IA64_UNCACHED_OFFSET);	ia64_set_rr(__IA64_UNCACHED_OFFSET, (rid << 8) | (_PAGE_SIZE_256M << 2));	rid = ia64_rid(IA64_REGION_ID_KERNEL, PAGE_OFFSET);	ia64_set_rr(PAGE_OFFSET, (rid << 8) | (_PAGE_SIZE_256M << 2));	rid = ia64_rid(IA64_REGION_ID_KERNEL, VMALLOC_START);	ia64_set_rr(VMALLOC_START, (rid << 8) | (PAGE_SHIFT << 2) | 1);	__restore_flags(flags);	/*	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped	 * address space.  The IA-64 architecture guarantees that at least 50 bits of	 * virtual address space are implemented but if we pick a large enough page size	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a	 * problem in practice.  Alternatively, we could truncate the top of the mapped	 * address space to not permit mappings that would overlap with the VMLPT.	 * --davidm 00/12/06	 */#	define pte_bits			3#	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)	/*	 * The virtual page table has to cover the entire implemented address space within	 * a region even though not all of this space may be mappable.  The reason for	 * this is that the Access bit and Dirty bit fault handlers perform	 * non-speculative accesses to the virtual page table, so the address range of the	 * virtual page table itself needs to be covered by virtual page table.	 */#	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)#	define POW2(n)			(1ULL << (n))	impl_va_bits = ffz(~my_cpu_data.unimpl_va_mask);	if (impl_va_bits < 51 || impl_va_bits > 61)		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);	/* place the VMLPT at the end of each page-table mapped region: */	pta = POW2(61) - POW2(vmlpt_bits);	if (POW2(mapped_space_bits) >= pta)		panic("mm/init: overlap between virtually mapped linear page table and "		      "mapped kernel space!");	/*	 * Set the (virtually mapped linear) page table address.  Bit	 * 8 selects between the short and long format, bits 2-7 the	 * size of the table, and bit 0 whether the VHPT walker is	 * enabled.	 */	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);}/* * Set up the page tables. */voidpaging_init (void){	unsigned long max_dma, zones_size[MAX_NR_ZONES];	clear_page((void *) ZERO_PAGE_ADDR);	/* initialize mem_map[] */	memset(zones_size, 0, sizeof(zones_size));	max_dma = (PAGE_ALIGN(MAX_DMA_ADDRESS) >> PAGE_SHIFT);	if (max_low_pfn < max_dma)		zones_size[ZONE_DMA] = max_low_pfn;	else {		zones_size[ZONE_DMA] = max_dma;		zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;	}	free_area_init(zones_size);}static intcount_pages (u64 start, u64 end, void *arg){	unsigned long *count = arg;	*count += (end - start) >> PAGE_SHIFT;	return 0;}static intcount_reserved_pages (u64 start, u64 end, void *arg){	unsigned long num_reserved = 0;	unsigned long *count = arg;	struct page *pg;	for (pg = virt_to_page(start); pg < virt_to_page(end); ++pg)		if (PageReserved(pg))			++num_reserved;	*count += num_reserved;	return 0;}voidmem_init (void){	extern char __start_gate_section[];	long reserved_pages, codesize, datasize, initsize;#ifdef CONFIG_PCI	/*	 * This needs to be called _after_ the command line has been parsed but _before_	 * any drivers that may need the PCI DMA interface are initialized or bootmem has	 * been freed.	 */	platform_pci_dma_init();#endif	if (!mem_map)		BUG();	num_physpages = 0;	efi_memmap_walk(count_pages, &num_physpages);	max_mapnr = max_low_pfn;	high_memory = __va(max_low_pfn * PAGE_SIZE);	totalram_pages += free_all_bootmem();	reserved_pages = 0;	efi_memmap_walk(count_reserved_pages, &reserved_pages);	codesize =  (unsigned long) &_etext - (unsigned long) &_stext;	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;	printk("Memory: %luk/%luk available (%luk code, %luk reserved, %luk data, %luk init)\n",	       (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),	       max_mapnr << (PAGE_SHIFT - 10), codesize >> 10, reserved_pages << (PAGE_SHIFT - 10),	       datasize >> 10, initsize >> 10);	/* install the gate page in the global page table: */	put_gate_page(virt_to_page(__start_gate_section), GATE_ADDR);#ifdef CONFIG_IA32_SUPPORT	ia32_gdt_init();#endif}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -