⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cache.c

📁 Linux内核源代码 为压缩文件 是<<Linux内核>>一书中的源代码
💻 C
字号:
/* $Id: cache.c,v 1.10 2000/03/07 11:58:34 gniibe Exp $ * *  linux/arch/sh/mm/cache.c * * Copyright (C) 1999, 2000  Niibe Yutaka * */#include <linux/init.h>#include <linux/mman.h>#include <linux/mm.h>#include <linux/threads.h>#include <asm/page.h>#include <asm/pgtable.h>#include <asm/processor.h>#include <asm/cache.h>#include <asm/io.h>#include <asm/uaccess.h>#if defined(__sh3__)#define CCR		0xffffffec	/* Address of Cache Control Register */#define CCR_CACHE_VAL	0x00000005	/* 8k-byte cache, P1-wb, enable */#define CCR_CACHE_INIT	0x0000000d	/* 8k-byte cache, CF, P1-wb, enable */#define CCR_CACHE_ENABLE	 1#define CACHE_IC_ADDRESS_ARRAY 0xf0000000 /* SH-3 has unified cache system */#define CACHE_OC_ADDRESS_ARRAY 0xf0000000#define CACHE_VALID	  1#define CACHE_UPDATED	  2/* 7709A/7729 has 16K cache (256-entry), while 7702 has only 2K(direct)   7702 is not supported (yet) */struct _cache_system_info {	int way_shift;	int entry_mask;	int num_entries;};/* Data at BSS is cleared after setting this variable.   So, we Should not placed this variable at BSS section.   Initialize this, it is placed at data section. */static struct _cache_system_info cache_system_info = {0,};#define CACHE_OC_WAY_SHIFT	(cache_system_info.way_shift)#define CACHE_IC_WAY_SHIFT	(cache_system_info.way_shift)#define CACHE_OC_ENTRY_SHIFT    4#define CACHE_OC_ENTRY_MASK	(cache_system_info.entry_mask)#define CACHE_IC_ENTRY_MASK	(cache_system_info.entry_mask)#define CACHE_OC_NUM_ENTRIES	(cache_system_info.num_entries)#define CACHE_OC_NUM_WAYS	4#define CACHE_IC_NUM_WAYS	4#elif defined(__SH4__)#define CCR		 0xff00001c	/* Address of Cache Control Register */#define CCR_CACHE_VAL	 0x00000105	/* 8k+16k-byte cache,P1-wb,enable */#define CCR_CACHE_INIT	 0x0000090d	/* ICI,ICE(8k), OCI,P1-wb,OCE(16k) */#define CCR_CACHE_ENABLE 0x00000101#define CACHE_IC_ADDRESS_ARRAY 0xf0000000#define CACHE_OC_ADDRESS_ARRAY 0xf4000000#define CACHE_VALID	  1#define CACHE_UPDATED	  2#define CACHE_OC_WAY_SHIFT       13#define CACHE_IC_WAY_SHIFT       13#define CACHE_OC_ENTRY_SHIFT      5#define CACHE_IC_ENTRY_SHIFT      5#define CACHE_OC_ENTRY_MASK		0x3fe0#define CACHE_OC_ENTRY_PHYS_MASK	0x0fe0#define CACHE_IC_ENTRY_MASK		0x1fe0#define CACHE_IC_NUM_ENTRIES	256#define CACHE_OC_NUM_ENTRIES	512#define CACHE_OC_NUM_WAYS	  1#define CACHE_IC_NUM_WAYS	  1#endif/* * Write back all the cache. * * For SH-4, we only need to flush (write back) Operand Cache, * as Instruction Cache doesn't have "updated" data. * * Assumes that this is called in interrupt disabled context, and P2. * Shuld be INLINE function. */static inline void cache_wback_all(void){	unsigned long addr, data, i, j;	for (i=0; i<CACHE_OC_NUM_ENTRIES; i++) {		for (j=0; j<CACHE_OC_NUM_WAYS; j++) {			addr = CACHE_OC_ADDRESS_ARRAY|(j<<CACHE_OC_WAY_SHIFT)|				(i<<CACHE_OC_ENTRY_SHIFT);			data = ctrl_inl(addr);			if ((data & (CACHE_UPDATED|CACHE_VALID))			    == (CACHE_UPDATED|CACHE_VALID)) {				data &= ~CACHE_UPDATED;				ctrl_outl(data, addr);			}		}	}}static void __initdetect_cpu_and_cache_system(void){#if defined(__sh3__)	unsigned long addr0, addr1, data0, data1, data2, data3;	jump_to_P2();	/*	 * Check if the entry shadows or not.	 * When shadowed, it's 128-entry system.	 * Otherwise, it's 256-entry system.	 */	addr0 = CACHE_OC_ADDRESS_ARRAY + (3 << 12);	addr1 = CACHE_OC_ADDRESS_ARRAY + (1 << 12);	/* First, write back & invalidate */	data0  = ctrl_inl(addr0);	ctrl_outl(data0&~(CACHE_VALID|CACHE_UPDATED), addr0);	data1  = ctrl_inl(addr1);	ctrl_outl(data1&~(CACHE_VALID|CACHE_UPDATED), addr1);	/* Next, check if there's shadow or not */	data0 = ctrl_inl(addr0);	data0 ^= CACHE_VALID;	ctrl_outl(data0, addr0);	data1 = ctrl_inl(addr1);	data2 = data1 ^ CACHE_VALID;	ctrl_outl(data2, addr1);	data3 = ctrl_inl(addr0);	/* Lastly, invaliate them. */	ctrl_outl(data0&~CACHE_VALID, addr0);	ctrl_outl(data2&~CACHE_VALID, addr1);	back_to_P1();	if (data0 == data1 && data2 == data3) {	/* Shadow */		cache_system_info.way_shift = 11;		cache_system_info.entry_mask = 0x7f0;		cache_system_info.num_entries = 128;		cpu_data->type = CPU_SH7708;	} else {				/* 7709A or 7729  */		cache_system_info.way_shift = 12;		cache_system_info.entry_mask = 0xff0;		cache_system_info.num_entries = 256;		cpu_data->type = CPU_SH7729;	}#elif defined(__SH4__)	cpu_data->type = CPU_SH7750;#endif}void __init cache_init(void){	unsigned long ccr;	detect_cpu_and_cache_system();	ccr = ctrl_inl(CCR);	jump_to_P2();	if (ccr & CCR_CACHE_ENABLE)		/*		 * XXX: Should check RA here. 		 * If RA was 1, we only need to flush the half of the caches.		 */		cache_wback_all();	ctrl_outl(CCR_CACHE_INIT, CCR);	back_to_P1();}#if defined(__SH4__)/* * SH-4 has virtually indexed and physically tagged cache. *//* * Write back the dirty D-caches, but not invalidate them. * * START, END: Virtual Address */static void dcache_wback_range(unsigned long start, unsigned long end){	unsigned long v;	start &= ~(L1_CACHE_BYTES-1);	for (v = start; v < end; v+=L1_CACHE_BYTES) {		asm volatile("ocbwb	%0"			     : /* no output */			     : "m" (__m(v)));	}}/* * Invalidate I-caches. * * START, END: Virtual Address * */static void icache_purge_range(unsigned long start, unsigned long end){	unsigned long addr, data, v;	start &= ~(L1_CACHE_BYTES-1);	jump_to_P2();	/*	 * To handle the cache-line, we calculate the entry with virtual	 * address: entry = vaddr & CACHE_IC_ENTRY_MASK.	 *	 * With A-bit "on", data written to is translated by MMU and	 * compared the tag of cache and if it's not matched, nothing	 * will be occurred.  (We can avoid flushing other caches.)	 * 	 * NOTE: We can use A-bit feature here, because we have valid	 * entriy in TLB (at least in UTLB), as dcache_wback_range is	 * called before this function is called.	 */	for (v = start; v < end; v+=L1_CACHE_BYTES) {		addr = CACHE_IC_ADDRESS_ARRAY |	(v&CACHE_IC_ENTRY_MASK)			| 0x8 /* A-bit */;		data = (v&0xfffffc00); /* Valid=0 */		ctrl_outl(data, addr);	}	back_to_P1();}/* * Write back the range of D-cache, and purge the I-cache. * * Called from sh/kernel/signal.c, after accessing the memory * through U0 area.  START and END is the address of U0. */void flush_icache_range(unsigned long start, unsigned long end){	unsigned long flags;	save_and_cli(flags);	dcache_wback_range(start, end);	icache_purge_range(start, end);	restore_flags(flags);}/* * Invalidate the I-cache of the page (don't need to write back D-cache). * * Called from kernel/ptrace.c, mm/memory.c after flush_page_to_ram is called. */void flush_icache_page(struct vm_area_struct *vma, struct page *pg){	unsigned long phys, addr, data, i;	/* Physical address of this page */	phys = (pg - mem_map)*PAGE_SIZE + __MEMORY_START;	jump_to_P2();	/* Loop all the I-cache */	for (i=0; i<CACHE_IC_NUM_ENTRIES; i++) {		addr = CACHE_IC_ADDRESS_ARRAY| (i<<CACHE_IC_ENTRY_SHIFT);		data = ctrl_inl(addr);		if ((data & CACHE_VALID) && (data&PAGE_MASK) == phys) {			data &= ~CACHE_VALID;			ctrl_outl(data, addr);		}	}	back_to_P1();}/* * Write back & invalidate the D-cache of the page. * (To avoid "alias" issues) */void flush_dcache_page(struct page *pg){	unsigned long phys, addr, data, i;	/* Physical address of this page */	phys = (pg - mem_map)*PAGE_SIZE + __MEMORY_START;	jump_to_P2();	/* Loop all the D-cache */	for (i=0; i<CACHE_OC_NUM_ENTRIES; i++) {		addr = CACHE_OC_ADDRESS_ARRAY| (i<<CACHE_OC_ENTRY_SHIFT);		data = ctrl_inl(addr);		if ((data & CACHE_VALID) && (data&PAGE_MASK) == phys) {			data &= ~(CACHE_VALID|CACHE_UPDATED);			ctrl_outl(data, addr);		}	}	back_to_P1();}void flush_cache_all(void){	unsigned long addr, data, i;	unsigned long flags;	save_and_cli(flags);	jump_to_P2();	/* Loop all the D-cache */	for (i=0; i<CACHE_OC_NUM_ENTRIES; i++) {		addr = CACHE_OC_ADDRESS_ARRAY|(i<<CACHE_OC_ENTRY_SHIFT);		data = ctrl_inl(addr);		if (data & CACHE_VALID) {			data &= ~(CACHE_UPDATED|CACHE_VALID);			ctrl_outl(data, addr);		}	}	/* Loop all the I-cache */	for (i=0; i<CACHE_IC_NUM_ENTRIES; i++) {		addr = CACHE_IC_ADDRESS_ARRAY| (i<<CACHE_IC_ENTRY_SHIFT);		data = ctrl_inl(addr);		if (data & CACHE_VALID) {			data &= ~CACHE_VALID;			ctrl_outl(data, addr);		}	}	back_to_P1();	restore_flags(flags);}void flush_cache_mm(struct mm_struct *mm){	/* Is there any good way? */	/* XXX: possibly call flush_cache_range for each vm area */	flush_cache_all();}/* * Write back and invalidate D-caches. * * START, END: Virtual Address (U0 address) * * NOTE: We need to flush the _physical_ page entry. * Flushing the cache lines for U0 only isn't enough. * We need to flush for P1 too, which may contain aliases. */void flush_cache_range(struct mm_struct *mm, unsigned long start,		       unsigned long end){	/*	 * We could call flush_cache_page for the pages of these range,	 * but it's not efficient (scan the caches all the time...).	 *	 * We can't use A-bit magic, as there's the case we don't have	 * valid entry on TLB.	 */	flush_cache_all();}/* * Write back and invalidate D-caches for the page. * * ADDR: Virtual Address (U0 address) * * NOTE: We need to flush the _physical_ page entry. * Flushing the cache lines for U0 only isn't enough. * We need to flush for P1 too, which may contain aliases. */void flush_cache_page(struct vm_area_struct *vma, unsigned long addr){	pgd_t *dir;	pmd_t *pmd;	pte_t *pte;	pte_t entry;	unsigned long phys;	struct page *pg;	dir = pgd_offset(vma->vm_mm, addr);	pmd = pmd_offset(dir, addr);	if (pmd_none(*pmd))		return;	if (pmd_bad(*pmd))		return;	pte = pte_offset(pmd, addr);	entry = *pte;	if (pte_none(entry) || !pte_present(entry))		return;	phys = pte_val(entry)&PAGE_MASK;	pg = virt_to_page(__va(phys));	flush_dcache_page(pg);}/* * Write-back & invalidate the cache. * * After accessing the memory from kernel space (P1-area), we need to  * write back the cache line. * * We search the D-cache to see if we have the entries corresponding to * the page, and if found, write back them. */void __flush_page_to_ram(void *kaddr){	unsigned long phys, addr, data, i;	/* Physical address of this page */	phys = PHYSADDR(kaddr);	jump_to_P2();	/* Loop all the D-cache */	for (i=0; i<CACHE_OC_NUM_ENTRIES; i++) {		addr = CACHE_OC_ADDRESS_ARRAY| (i<<CACHE_OC_ENTRY_SHIFT);		data = ctrl_inl(addr);		if ((data & CACHE_VALID) && (data&PAGE_MASK) == phys) {			data &= ~(CACHE_UPDATED|CACHE_VALID);			ctrl_outl(data, addr);		}	}	back_to_P1();}void flush_page_to_ram(struct page *pg){	unsigned long phys;	/* Physical address of this page */	phys = (pg - mem_map)*PAGE_SIZE + __MEMORY_START;	__flush_page_to_ram(phys_to_virt(phys));}/* * Check entries of the I-cache & D-cache of the page. * (To see "alias" issues) */void check_cache_page(struct page *pg){	unsigned long phys, addr, data, i;	unsigned long kaddr;	unsigned long cache_line_index;	int bingo = 0;	/* Physical address of this page */	phys = (pg - mem_map)*PAGE_SIZE + __MEMORY_START;	kaddr = phys + PAGE_OFFSET;	cache_line_index = (kaddr&CACHE_OC_ENTRY_MASK)>>CACHE_OC_ENTRY_SHIFT;	jump_to_P2();	/* Loop all the D-cache */	for (i=0; i<CACHE_OC_NUM_ENTRIES; i++) {		addr = CACHE_OC_ADDRESS_ARRAY| (i<<CACHE_OC_ENTRY_SHIFT);		data = ctrl_inl(addr);		if ((data & (CACHE_UPDATED|CACHE_VALID))		    == (CACHE_UPDATED|CACHE_VALID)		    && (data&PAGE_MASK) == phys) {			data &= ~(CACHE_VALID|CACHE_UPDATED);			ctrl_outl(data, addr);			if ((i^cache_line_index)&0x180)				bingo = 1;		}	}	cache_line_index &= 0xff;	/* Loop all the I-cache */	for (i=0; i<CACHE_IC_NUM_ENTRIES; i++) {		addr = CACHE_IC_ADDRESS_ARRAY| (i<<CACHE_IC_ENTRY_SHIFT);		data = ctrl_inl(addr);		if ((data & CACHE_VALID) && (data&PAGE_MASK) == phys) {			data &= ~CACHE_VALID;			ctrl_outl(data, addr);			if (((i^cache_line_index)&0x80))				bingo = 2;		}	}	back_to_P1();	if (bingo) {		extern void dump_stack(void);		if (bingo ==1)			printk("BINGO!\n");		else			printk("Bingo!\n");		dump_stack();		printk("--------------------\n");	}}/* Page is 4K, OC size is 16K, there are four lines. */#define CACHE_ALIAS 0x00003000void clear_user_page(void *to, unsigned long address){	clear_page(to);	if (((address ^ (unsigned long)to) & CACHE_ALIAS))		__flush_page_to_ram(to);}void copy_user_page(void *to, void *from, unsigned long address){	copy_page(to, from);	if (((address ^ (unsigned long)to) & CACHE_ALIAS))		__flush_page_to_ram(to);}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -