📄 cache.c
字号:
/* $Id: cache.c,v 1.10 2000/03/07 11:58:34 gniibe Exp $ * * linux/arch/sh/mm/cache.c * * Copyright (C) 1999, 2000 Niibe Yutaka * */#include <linux/init.h>#include <linux/mman.h>#include <linux/mm.h>#include <linux/threads.h>#include <asm/page.h>#include <asm/pgtable.h>#include <asm/processor.h>#include <asm/cache.h>#include <asm/io.h>#include <asm/uaccess.h>#if defined(__sh3__)#define CCR 0xffffffec /* Address of Cache Control Register */#define CCR_CACHE_VAL 0x00000005 /* 8k-byte cache, P1-wb, enable */#define CCR_CACHE_INIT 0x0000000d /* 8k-byte cache, CF, P1-wb, enable */#define CCR_CACHE_ENABLE 1#define CACHE_IC_ADDRESS_ARRAY 0xf0000000 /* SH-3 has unified cache system */#define CACHE_OC_ADDRESS_ARRAY 0xf0000000#define CACHE_VALID 1#define CACHE_UPDATED 2/* 7709A/7729 has 16K cache (256-entry), while 7702 has only 2K(direct) 7702 is not supported (yet) */struct _cache_system_info { int way_shift; int entry_mask; int num_entries;};/* Data at BSS is cleared after setting this variable. So, we Should not placed this variable at BSS section. Initialize this, it is placed at data section. */static struct _cache_system_info cache_system_info = {0,};#define CACHE_OC_WAY_SHIFT (cache_system_info.way_shift)#define CACHE_IC_WAY_SHIFT (cache_system_info.way_shift)#define CACHE_OC_ENTRY_SHIFT 4#define CACHE_OC_ENTRY_MASK (cache_system_info.entry_mask)#define CACHE_IC_ENTRY_MASK (cache_system_info.entry_mask)#define CACHE_OC_NUM_ENTRIES (cache_system_info.num_entries)#define CACHE_OC_NUM_WAYS 4#define CACHE_IC_NUM_WAYS 4#elif defined(__SH4__)#define CCR 0xff00001c /* Address of Cache Control Register */#define CCR_CACHE_VAL 0x00000105 /* 8k+16k-byte cache,P1-wb,enable */#define CCR_CACHE_INIT 0x0000090d /* ICI,ICE(8k), OCI,P1-wb,OCE(16k) */#define CCR_CACHE_ENABLE 0x00000101#define CACHE_IC_ADDRESS_ARRAY 0xf0000000#define CACHE_OC_ADDRESS_ARRAY 0xf4000000#define CACHE_VALID 1#define CACHE_UPDATED 2#define CACHE_OC_WAY_SHIFT 13#define CACHE_IC_WAY_SHIFT 13#define CACHE_OC_ENTRY_SHIFT 5#define CACHE_IC_ENTRY_SHIFT 5#define CACHE_OC_ENTRY_MASK 0x3fe0#define CACHE_OC_ENTRY_PHYS_MASK 0x0fe0#define CACHE_IC_ENTRY_MASK 0x1fe0#define CACHE_IC_NUM_ENTRIES 256#define CACHE_OC_NUM_ENTRIES 512#define CACHE_OC_NUM_WAYS 1#define CACHE_IC_NUM_WAYS 1#endif/* * Write back all the cache. * * For SH-4, we only need to flush (write back) Operand Cache, * as Instruction Cache doesn't have "updated" data. * * Assumes that this is called in interrupt disabled context, and P2. * Shuld be INLINE function. */static inline void cache_wback_all(void){ unsigned long addr, data, i, j; for (i=0; i<CACHE_OC_NUM_ENTRIES; i++) { for (j=0; j<CACHE_OC_NUM_WAYS; j++) { addr = CACHE_OC_ADDRESS_ARRAY|(j<<CACHE_OC_WAY_SHIFT)| (i<<CACHE_OC_ENTRY_SHIFT); data = ctrl_inl(addr); if ((data & (CACHE_UPDATED|CACHE_VALID)) == (CACHE_UPDATED|CACHE_VALID)) { data &= ~CACHE_UPDATED; ctrl_outl(data, addr); } } }}static void __initdetect_cpu_and_cache_system(void){#if defined(__sh3__) unsigned long addr0, addr1, data0, data1, data2, data3; jump_to_P2(); /* * Check if the entry shadows or not. * When shadowed, it's 128-entry system. * Otherwise, it's 256-entry system. */ addr0 = CACHE_OC_ADDRESS_ARRAY + (3 << 12); addr1 = CACHE_OC_ADDRESS_ARRAY + (1 << 12); /* First, write back & invalidate */ data0 = ctrl_inl(addr0); ctrl_outl(data0&~(CACHE_VALID|CACHE_UPDATED), addr0); data1 = ctrl_inl(addr1); ctrl_outl(data1&~(CACHE_VALID|CACHE_UPDATED), addr1); /* Next, check if there's shadow or not */ data0 = ctrl_inl(addr0); data0 ^= CACHE_VALID; ctrl_outl(data0, addr0); data1 = ctrl_inl(addr1); data2 = data1 ^ CACHE_VALID; ctrl_outl(data2, addr1); data3 = ctrl_inl(addr0); /* Lastly, invaliate them. */ ctrl_outl(data0&~CACHE_VALID, addr0); ctrl_outl(data2&~CACHE_VALID, addr1); back_to_P1(); if (data0 == data1 && data2 == data3) { /* Shadow */ cache_system_info.way_shift = 11; cache_system_info.entry_mask = 0x7f0; cache_system_info.num_entries = 128; cpu_data->type = CPU_SH7708; } else { /* 7709A or 7729 */ cache_system_info.way_shift = 12; cache_system_info.entry_mask = 0xff0; cache_system_info.num_entries = 256; cpu_data->type = CPU_SH7729; }#elif defined(__SH4__) cpu_data->type = CPU_SH7750;#endif}void __init cache_init(void){ unsigned long ccr; detect_cpu_and_cache_system(); ccr = ctrl_inl(CCR); jump_to_P2(); if (ccr & CCR_CACHE_ENABLE) /* * XXX: Should check RA here. * If RA was 1, we only need to flush the half of the caches. */ cache_wback_all(); ctrl_outl(CCR_CACHE_INIT, CCR); back_to_P1();}#if defined(__SH4__)/* * SH-4 has virtually indexed and physically tagged cache. *//* * Write back the dirty D-caches, but not invalidate them. * * START, END: Virtual Address */static void dcache_wback_range(unsigned long start, unsigned long end){ unsigned long v; start &= ~(L1_CACHE_BYTES-1); for (v = start; v < end; v+=L1_CACHE_BYTES) { asm volatile("ocbwb %0" : /* no output */ : "m" (__m(v))); }}/* * Invalidate I-caches. * * START, END: Virtual Address * */static void icache_purge_range(unsigned long start, unsigned long end){ unsigned long addr, data, v; start &= ~(L1_CACHE_BYTES-1); jump_to_P2(); /* * To handle the cache-line, we calculate the entry with virtual * address: entry = vaddr & CACHE_IC_ENTRY_MASK. * * With A-bit "on", data written to is translated by MMU and * compared the tag of cache and if it's not matched, nothing * will be occurred. (We can avoid flushing other caches.) * * NOTE: We can use A-bit feature here, because we have valid * entriy in TLB (at least in UTLB), as dcache_wback_range is * called before this function is called. */ for (v = start; v < end; v+=L1_CACHE_BYTES) { addr = CACHE_IC_ADDRESS_ARRAY | (v&CACHE_IC_ENTRY_MASK) | 0x8 /* A-bit */; data = (v&0xfffffc00); /* Valid=0 */ ctrl_outl(data, addr); } back_to_P1();}/* * Write back the range of D-cache, and purge the I-cache. * * Called from sh/kernel/signal.c, after accessing the memory * through U0 area. START and END is the address of U0. */void flush_icache_range(unsigned long start, unsigned long end){ unsigned long flags; save_and_cli(flags); dcache_wback_range(start, end); icache_purge_range(start, end); restore_flags(flags);}/* * Invalidate the I-cache of the page (don't need to write back D-cache). * * Called from kernel/ptrace.c, mm/memory.c after flush_page_to_ram is called. */void flush_icache_page(struct vm_area_struct *vma, struct page *pg){ unsigned long phys, addr, data, i; /* Physical address of this page */ phys = (pg - mem_map)*PAGE_SIZE + __MEMORY_START; jump_to_P2(); /* Loop all the I-cache */ for (i=0; i<CACHE_IC_NUM_ENTRIES; i++) { addr = CACHE_IC_ADDRESS_ARRAY| (i<<CACHE_IC_ENTRY_SHIFT); data = ctrl_inl(addr); if ((data & CACHE_VALID) && (data&PAGE_MASK) == phys) { data &= ~CACHE_VALID; ctrl_outl(data, addr); } } back_to_P1();}/* * Write back & invalidate the D-cache of the page. * (To avoid "alias" issues) */void flush_dcache_page(struct page *pg){ unsigned long phys, addr, data, i; /* Physical address of this page */ phys = (pg - mem_map)*PAGE_SIZE + __MEMORY_START; jump_to_P2(); /* Loop all the D-cache */ for (i=0; i<CACHE_OC_NUM_ENTRIES; i++) { addr = CACHE_OC_ADDRESS_ARRAY| (i<<CACHE_OC_ENTRY_SHIFT); data = ctrl_inl(addr); if ((data & CACHE_VALID) && (data&PAGE_MASK) == phys) { data &= ~(CACHE_VALID|CACHE_UPDATED); ctrl_outl(data, addr); } } back_to_P1();}void flush_cache_all(void){ unsigned long addr, data, i; unsigned long flags; save_and_cli(flags); jump_to_P2(); /* Loop all the D-cache */ for (i=0; i<CACHE_OC_NUM_ENTRIES; i++) { addr = CACHE_OC_ADDRESS_ARRAY|(i<<CACHE_OC_ENTRY_SHIFT); data = ctrl_inl(addr); if (data & CACHE_VALID) { data &= ~(CACHE_UPDATED|CACHE_VALID); ctrl_outl(data, addr); } } /* Loop all the I-cache */ for (i=0; i<CACHE_IC_NUM_ENTRIES; i++) { addr = CACHE_IC_ADDRESS_ARRAY| (i<<CACHE_IC_ENTRY_SHIFT); data = ctrl_inl(addr); if (data & CACHE_VALID) { data &= ~CACHE_VALID; ctrl_outl(data, addr); } } back_to_P1(); restore_flags(flags);}void flush_cache_mm(struct mm_struct *mm){ /* Is there any good way? */ /* XXX: possibly call flush_cache_range for each vm area */ flush_cache_all();}/* * Write back and invalidate D-caches. * * START, END: Virtual Address (U0 address) * * NOTE: We need to flush the _physical_ page entry. * Flushing the cache lines for U0 only isn't enough. * We need to flush for P1 too, which may contain aliases. */void flush_cache_range(struct mm_struct *mm, unsigned long start, unsigned long end){ /* * We could call flush_cache_page for the pages of these range, * but it's not efficient (scan the caches all the time...). * * We can't use A-bit magic, as there's the case we don't have * valid entry on TLB. */ flush_cache_all();}/* * Write back and invalidate D-caches for the page. * * ADDR: Virtual Address (U0 address) * * NOTE: We need to flush the _physical_ page entry. * Flushing the cache lines for U0 only isn't enough. * We need to flush for P1 too, which may contain aliases. */void flush_cache_page(struct vm_area_struct *vma, unsigned long addr){ pgd_t *dir; pmd_t *pmd; pte_t *pte; pte_t entry; unsigned long phys; struct page *pg; dir = pgd_offset(vma->vm_mm, addr); pmd = pmd_offset(dir, addr); if (pmd_none(*pmd)) return; if (pmd_bad(*pmd)) return; pte = pte_offset(pmd, addr); entry = *pte; if (pte_none(entry) || !pte_present(entry)) return; phys = pte_val(entry)&PAGE_MASK; pg = virt_to_page(__va(phys)); flush_dcache_page(pg);}/* * Write-back & invalidate the cache. * * After accessing the memory from kernel space (P1-area), we need to * write back the cache line. * * We search the D-cache to see if we have the entries corresponding to * the page, and if found, write back them. */void __flush_page_to_ram(void *kaddr){ unsigned long phys, addr, data, i; /* Physical address of this page */ phys = PHYSADDR(kaddr); jump_to_P2(); /* Loop all the D-cache */ for (i=0; i<CACHE_OC_NUM_ENTRIES; i++) { addr = CACHE_OC_ADDRESS_ARRAY| (i<<CACHE_OC_ENTRY_SHIFT); data = ctrl_inl(addr); if ((data & CACHE_VALID) && (data&PAGE_MASK) == phys) { data &= ~(CACHE_UPDATED|CACHE_VALID); ctrl_outl(data, addr); } } back_to_P1();}void flush_page_to_ram(struct page *pg){ unsigned long phys; /* Physical address of this page */ phys = (pg - mem_map)*PAGE_SIZE + __MEMORY_START; __flush_page_to_ram(phys_to_virt(phys));}/* * Check entries of the I-cache & D-cache of the page. * (To see "alias" issues) */void check_cache_page(struct page *pg){ unsigned long phys, addr, data, i; unsigned long kaddr; unsigned long cache_line_index; int bingo = 0; /* Physical address of this page */ phys = (pg - mem_map)*PAGE_SIZE + __MEMORY_START; kaddr = phys + PAGE_OFFSET; cache_line_index = (kaddr&CACHE_OC_ENTRY_MASK)>>CACHE_OC_ENTRY_SHIFT; jump_to_P2(); /* Loop all the D-cache */ for (i=0; i<CACHE_OC_NUM_ENTRIES; i++) { addr = CACHE_OC_ADDRESS_ARRAY| (i<<CACHE_OC_ENTRY_SHIFT); data = ctrl_inl(addr); if ((data & (CACHE_UPDATED|CACHE_VALID)) == (CACHE_UPDATED|CACHE_VALID) && (data&PAGE_MASK) == phys) { data &= ~(CACHE_VALID|CACHE_UPDATED); ctrl_outl(data, addr); if ((i^cache_line_index)&0x180) bingo = 1; } } cache_line_index &= 0xff; /* Loop all the I-cache */ for (i=0; i<CACHE_IC_NUM_ENTRIES; i++) { addr = CACHE_IC_ADDRESS_ARRAY| (i<<CACHE_IC_ENTRY_SHIFT); data = ctrl_inl(addr); if ((data & CACHE_VALID) && (data&PAGE_MASK) == phys) { data &= ~CACHE_VALID; ctrl_outl(data, addr); if (((i^cache_line_index)&0x80)) bingo = 2; } } back_to_P1(); if (bingo) { extern void dump_stack(void); if (bingo ==1) printk("BINGO!\n"); else printk("Bingo!\n"); dump_stack(); printk("--------------------\n"); }}/* Page is 4K, OC size is 16K, there are four lines. */#define CACHE_ALIAS 0x00003000void clear_user_page(void *to, unsigned long address){ clear_page(to); if (((address ^ (unsigned long)to) & CACHE_ALIAS)) __flush_page_to_ram(to);}void copy_user_page(void *to, void *from, unsigned long address){ copy_page(to, from); if (((address ^ (unsigned long)to) & CACHE_ALIAS)) __flush_page_to_ram(to);}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -