⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 test_complex_source.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* matrix/test_complex_source.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */void FUNCTION (test, func) (void);void FUNCTION (test, trap) (void);void FUNCTION (test, text) (void);void FUNCTION (test, binary) (void);void FUNCTION (test, arith) (void);voidFUNCTION (test, func) (void){  size_t i, j;  int k = 0;  TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N);  gsl_test (m->data == 0, NAME (gsl_matrix) "_alloc returns valid pointer");  gsl_test (m->size1 != M, NAME (gsl_matrix) "_alloc returns valid size1");  gsl_test (m->size2 != N, NAME (gsl_matrix) "_alloc returns valid size2");  gsl_test (m->tda != N, NAME (gsl_matrix) "_alloc returns valid tda");  for (i = 0; i < M; i++)    {      for (j = 0; j < N; j++)        {          BASE z = ZERO;          k++;          GSL_REAL (z) = (ATOMIC) k;          GSL_IMAG (z) = (ATOMIC) (k + 1000);          FUNCTION (gsl_matrix, set) (m, i, j, z);        }    }  status = 0;  k = 0;  for (i = 0; i < M; i++)    {      for (j = 0; j < N; j++)        {          k++;          if (m->data[2 * (i * N + j)] != k ||              m->data[2 * (i * N + j) + 1] != k + 1000)            status = 1;        }    }  gsl_test (status, NAME (gsl_matrix) "_set writes into array");  status = 0;  k = 0;  for (i = 0; i < M; i++)    {      for (j = 0; j < N; j++)        {          BASE z = FUNCTION (gsl_matrix, get) (m, i, j);          k++;          if (GSL_REAL (z) != k || GSL_IMAG (z) != k + 1000)            status = 1;        }    }  gsl_test (status, NAME (gsl_matrix) "_get reads from array");  FUNCTION (gsl_matrix, free) (m);      /* free whatever is in m */}#if !(USES_LONGDOUBLE && !HAVE_PRINTF_LONGDOUBLE)voidFUNCTION (test, text) (void){  TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N);  size_t i, j;  int k = 0;  {    FILE *f = fopen ("test.txt", "w");    k = 0;    for (i = 0; i < M; i++)      {        for (j = 0; j < N; j++)          {            BASE z;            k++;            GSL_REAL (z) = (ATOMIC) k;            GSL_IMAG (z) = (ATOMIC) (k + 1000);            FUNCTION (gsl_matrix, set) (m, i, j, z);          }      }    FUNCTION (gsl_matrix, fprintf) (f, m, OUT_FORMAT);    fclose (f);  }  {    FILE *f = fopen ("test.txt", "r");    TYPE (gsl_matrix) * mm = FUNCTION (gsl_matrix, alloc) (M, N);    status = 0;    FUNCTION (gsl_matrix, fscanf) (f, mm);    k = 0;    for (i = 0; i < M; i++)      {        for (j = 0; j < N; j++)          {            k++;            if (mm->data[2 * (i * N + j)] != k                || mm->data[2 * (i * N + j) + 1] != k + 1000)              status = 1;          }      }    gsl_test (status, NAME (gsl_matrix) "_fprintf and fscanf");    fclose (f);    FUNCTION (gsl_matrix, free) (mm);  }  FUNCTION (gsl_matrix, free) (m);}#endifvoidFUNCTION (test, binary) (void){  TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N);  size_t i, j;  int k = 0;  {    FILE *f = fopen ("test.dat", "wb");    k = 0;    for (i = 0; i < M; i++)      {        for (j = 0; j < N; j++)          {            BASE z = ZERO;            k++;            GSL_REAL (z) = (ATOMIC) k;            GSL_IMAG (z) = (ATOMIC) (k + 1000);            FUNCTION (gsl_matrix, set) (m, i, j, z);          }      }    FUNCTION (gsl_matrix, fwrite) (f, m);    fclose (f);  }  {    FILE *f = fopen ("test.dat", "rb");    TYPE (gsl_matrix) * mm = FUNCTION (gsl_matrix, alloc) (M, N);    status = 0;    FUNCTION (gsl_matrix, fread) (f, mm);    k = 0;    for (i = 0; i < M; i++)      {        for (j = 0; j < N; j++)          {            k++;            if (mm->data[2 * (i * N + j)] != k                || mm->data[2 * (i * N + j) + 1] != k + 1000)              status = 1;          }      }    gsl_test (status, NAME (gsl_matrix) "_write and read");    fclose (f);    FUNCTION (gsl_matrix, free) (mm);  }  FUNCTION (gsl_matrix, free) (m);}voidFUNCTION (test, trap) (void){  TYPE (gsl_matrix) * mc = FUNCTION (gsl_matrix, alloc) (M, N);  size_t i = 0, j = 0;  BASE z = { {(ATOMIC) 1.2, (ATOMIC) 3.4} };  BASE z1;  status = 0;  FUNCTION (gsl_matrix, set) (mc, i - 1, j, z);  gsl_test (!status,            NAME (gsl_matrix) "_set traps 1st index below lower bound");  status = 0;  FUNCTION (gsl_matrix, set) (mc, i, j - 1, z);  gsl_test (!status,            NAME (gsl_matrix) "_set traps 2nd index below lower bound");  status = 0;  FUNCTION (gsl_matrix, set) (mc, M + 1, 0, z);  gsl_test (!status,            NAME (gsl_matrix) "_set traps 1st index above upper bound");  status = 0;  FUNCTION (gsl_matrix, set) (mc, 0, N + 1, z);  gsl_test (!status,            NAME (gsl_matrix) "_set traps 2nd index above upper bound");  status = 0;  FUNCTION (gsl_matrix, set) (mc, M, 0, z);  gsl_test (!status, NAME (gsl_matrix) "_set traps 1st index at upper bound");  status = 0;  FUNCTION (gsl_matrix, set) (mc, 0, N, z);  gsl_test (!status, NAME (gsl_matrix) "_set traps 2nd index at upper bound");  status = 0;  z1 = FUNCTION (gsl_matrix, get) (mc, i - 1, 0);  gsl_test (!status,            NAME (gsl_matrix) "_get traps 1st index below lower bound");  gsl_test (GSL_REAL (z1) != 0,            NAME (gsl_matrix) "_get, zero real for 1st index below l.b.");  gsl_test (GSL_IMAG (z1) != 0,            NAME (gsl_matrix) "_get, zero imag for 1st index below l.b.");  status = 0;  z1 = FUNCTION (gsl_matrix, get) (mc, 0, j - 1);  gsl_test (!status,            NAME (gsl_matrix) "_get traps 2nd index below lower bound");  gsl_test (GSL_REAL (z1) != 0,            NAME (gsl_matrix) "_get, zero real for 2nd index below l.b.");  gsl_test (GSL_IMAG (z1) != 0,            NAME (gsl_matrix) "_get, zero imag for 2nd index below l.b.");  status = 0;  z1 = FUNCTION (gsl_matrix, get) (mc, M + 1, 0);  gsl_test (!status,            NAME (gsl_matrix) "_get traps 1st index above upper bound");  gsl_test (GSL_REAL (z1) != 0,            NAME (gsl_matrix) "_get, zero real for 1st index above u.b.");  gsl_test (GSL_IMAG (z1) != 0,            NAME (gsl_matrix) "_get, zero imag for 1st index above u.b.");  status = 0;  z1 = FUNCTION (gsl_matrix, get) (mc, 0, N + 1);  gsl_test (!status,            NAME (gsl_matrix) "_get traps 2nd index above upper bound");  gsl_test (GSL_REAL (z1) != 0,            NAME (gsl_matrix) "_get, zero real for 2nd index above u.b.");  gsl_test (GSL_IMAG (z1) != 0,            NAME (gsl_matrix) "_get, zero imag for 2nd index above u.b.");  status = 0;  z1 = FUNCTION (gsl_matrix, get) (mc, M, 0);  gsl_test (!status, NAME (gsl_matrix) "_get traps 1st index at upper bound");  gsl_test (GSL_REAL (z1) != 0,            NAME (gsl_matrix) "_get, zero real for 1st index at u.b.");  gsl_test (GSL_IMAG (z1) != 0,            NAME (gsl_matrix) "_get, zero imag for 1st index at u.b.");  status = 0;  z1 = FUNCTION (gsl_matrix, get) (mc, 0, N);  gsl_test (!status, NAME (gsl_matrix) "_get traps 2nd index at upper bound");  gsl_test (GSL_REAL (z1) != 0,            NAME (gsl_matrix) "_get, zero real for 2nd index at u.b.");  gsl_test (GSL_IMAG (z1) != 0,            NAME (gsl_matrix) "_get, zero imag for 2nd index at u.b.");  FUNCTION (gsl_matrix, free) (mc);}voidFUNCTION (test, arith) (void){#define P 8#define Q 12/* Must use smaller dimensions to prevent approximation of floats in float_mul_elements test*/  TYPE (gsl_matrix) * a = FUNCTION (gsl_matrix, alloc) (P, Q);  TYPE (gsl_matrix) * b = FUNCTION (gsl_matrix, alloc) (P, Q);  TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (P, Q);  size_t i, j;  size_t k = 0;  size_t status = 0;  for (i = 0; i < P; i++)    {      for (j = 0; j < Q; j++)        {          BASE z, z1;          GSL_REAL (z) = (ATOMIC) k;          GSL_IMAG (z) = (ATOMIC) (k + 10);          GSL_REAL (z1) = (ATOMIC) (k + 5);          GSL_IMAG (z1) = (ATOMIC) (k + 20);          FUNCTION (gsl_matrix, set) (a, i, j, z);          FUNCTION (gsl_matrix, set) (b, i, j, z1);          k++;        }    }  {    FUNCTION (gsl_matrix, memcpy) (m, a);    FUNCTION (gsl_matrix, add) (m, b);    k = 0;    status = 0;    for (i = 0; i < P; i++)      {        for (j = 0; j < Q; j++)          {            BASE z = FUNCTION (gsl_matrix, get) (m, i, j);            if (GSL_REAL (z) != (ATOMIC) (2 * k + 5) ||                GSL_IMAG (z) != (ATOMIC) (2 * k + 30))              status = 1;            k++;          }      }    gsl_test (status, NAME (gsl_matrix) "_add matrix addition");  }  {    FUNCTION (gsl_matrix, memcpy) (m, a);    FUNCTION (gsl_matrix, sub) (m, b);    k = 0;    status = 0;    for (i = 0; i < P; i++)      {        for (j = 0; j < Q; j++)          {            BASE z = FUNCTION (gsl_matrix, get) (m, i, j);            if (GSL_REAL (z) != (ATOMIC) (-5)                || GSL_IMAG (z) != (ATOMIC) (-10))              status = 1;            k++;          }      }    gsl_test (status, NAME (gsl_matrix) "_sub matrix subtraction");  }  {    FUNCTION (gsl_matrix, memcpy) (m, a);    FUNCTION (gsl_matrix, mul_elements) (m, b);    k = 0;    status = 0;    for (i = 0; i < P; i++)      {        for (j = 0; j < Q; j++)          {            ATOMIC real = -(ATOMIC) (25 * k + 200);            ATOMIC imag = (ATOMIC) (2 * k * k + 35 * k + 50);            BASE z = FUNCTION (gsl_matrix, get) (m, i, j);            if (fabs (GSL_REAL (z) - real) > 100 * BASE_EPSILON ||                fabs (GSL_IMAG (z) - imag) > 100 * BASE_EPSILON)              {                status = 1;#ifdef DEBUG                printf ("%d\t%d\n", i, j);                printf (OUT_FORMAT "\n",                        GSL_REAL (z) + (ATOMIC) (25 * (ATOMIC) k + 200));                printf (OUT_FORMAT "\n",                        GSL_IMAG (z) - (ATOMIC) (2 * k * k + 35 * k + 50));                printf ("\n");#endif              }            k++;          }      }    gsl_test (status, NAME (gsl_matrix) "_mul_elements multiplication");  }  {    FUNCTION (gsl_matrix, memcpy) (m, a);    FUNCTION (gsl_matrix, div_elements) (m, b);    k = 0;    status = 0;    for (i = 0; i < P; i++)      {        for (j = 0; j < Q; j++)          {            ATOMIC denom = (2 * k * k + 50 * k + 425);            ATOMIC real = (ATOMIC) (2 * k * k + 35 * k + 200) / denom;            ATOMIC imag = ((ATOMIC) (50) - (ATOMIC) (5 * k)) / denom;            BASE z = FUNCTION (gsl_matrix, get) (m, i, j);            if (fabs (GSL_REAL (z) - real) > 100 * BASE_EPSILON ||                fabs (GSL_IMAG (z) - imag) > 100 * BASE_EPSILON)              {#ifdef DEBUG                printf (OUT_FORMAT "\t",                        GSL_REAL (z) - (ATOMIC) (2 * k * k + 35 * k +                                                 200) / denom);                printf (OUT_FORMAT "\n",                        GSL_IMAG (z) - ((ATOMIC) (50) -                                        (ATOMIC) (5 * k)) / denom);#endif                status = 1;              }            k++;          }      }    gsl_test (status, NAME (gsl_matrix) "_div_elements division");  }  FUNCTION (gsl_matrix, free) (a);  FUNCTION (gsl_matrix, free) (b);  FUNCTION (gsl_matrix, free) (m);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -