⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bessel_k1.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* specfunc/bessel_K1.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *//* Author:  G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_sf_exp.h>#include <gsl/gsl_sf_bessel.h>#include "error.h"#include "chebyshev.h"#include "cheb_eval.c"/*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*//* based on SLATEC besk1(), besk1e() *//* chebyshev expansions  series for bk1        on the interval  0.          to  4.00000d+00                                        with weighted error   7.02e-18                                         log weighted error  17.15                               significant figures required  16.73                                    decimal places required  17.67 series for ak1        on the interval  1.25000d-01 to  5.00000d-01                                        with weighted error   6.06e-17                                         log weighted error  16.22                               significant figures required  15.41                                    decimal places required  16.83 series for ak12       on the interval  0.          to  1.25000d-01                                        with weighted error   2.58e-17                                         log weighted error  16.59                               significant figures required  15.22                                    decimal places required  17.16*/static double bk1_data[11] = {   0.0253002273389477705,  -0.3531559607765448760,   -0.1226111808226571480,   -0.0069757238596398643,  -0.0001730288957513052,  -0.0000024334061415659,  -0.0000000221338763073,  -0.0000000001411488392,  -0.0000000000006666901,  -0.0000000000000024274,  -0.0000000000000000070};static cheb_series bk1_cs = {  bk1_data,  10,  -1, 1,  8};static double ak1_data[17] = {   0.27443134069738830,    0.07571989953199368,  -0.00144105155647540,   0.00006650116955125,  -0.00000436998470952,   0.00000035402774997,  -0.00000003311163779,   0.00000000344597758,  -0.00000000038989323,   0.00000000004720819,  -0.00000000000604783,   0.00000000000081284,  -0.00000000000011386,   0.00000000000001654,  -0.00000000000000248,   0.00000000000000038,  -0.00000000000000006};static cheb_series ak1_cs = {  ak1_data,  16,  -1, 1,  9};static double ak12_data[14] = {   0.06379308343739001,   0.02832887813049721,  -0.00024753706739052,   0.00000577197245160,  -0.00000020689392195,   0.00000000973998344,  -0.00000000055853361,   0.00000000003732996,  -0.00000000000282505,   0.00000000000023720,  -0.00000000000002176,   0.00000000000000215,  -0.00000000000000022,   0.00000000000000002};static cheb_series ak12_cs = {  ak12_data,  13,  -1, 1,  7};/*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/int gsl_sf_bessel_K1_scaled_e(const double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(x <= 0.0) {    DOMAIN_ERROR(result);  }  else if(x < 2.0*GSL_DBL_MIN) {    OVERFLOW_ERROR(result);  }  else if(x <= 2.0) {    const double lx = log(x);    const double ex = exp(x);    int stat_I1;    gsl_sf_result I1;    gsl_sf_result c;    cheb_eval_e(&bk1_cs, 0.5*x*x-1.0, &c);    stat_I1 = gsl_sf_bessel_I1_e(x, &I1);    result->val  = ex * ((lx-M_LN2)*I1.val + (0.75 + c.val)/x);    result->err  = ex * (c.err/x + fabs(lx)*I1.err);    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return stat_I1;  }  else if(x <= 8.0) {    const double sx = sqrt(x);    gsl_sf_result c;    cheb_eval_e(&ak1_cs, (16.0/x-5.0)/3.0, &c);    result->val  = (1.25 + c.val) / sx;    result->err  = c.err / sx;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }  else {    const double sx = sqrt(x);    gsl_sf_result c;    cheb_eval_e(&ak12_cs, 16.0/x-1.0, &c);    result->val  = (1.25 + c.val) / sx;    result->err  = c.err / sx;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return GSL_SUCCESS;  }}int gsl_sf_bessel_K1_e(const double x, gsl_sf_result * result){  /* CHECK_POINTER(result) */  if(x <= 0.0) {    DOMAIN_ERROR(result);  }  else if(x < 2.0*GSL_DBL_MIN) {    OVERFLOW_ERROR(result);  }  else if(x <= 2.0) {    const double lx = log(x);    int stat_I1;    gsl_sf_result I1;    gsl_sf_result c;    cheb_eval_e(&bk1_cs, 0.5*x*x-1.0, &c);    stat_I1 = gsl_sf_bessel_I1_e(x, &I1);    result->val  = (lx-M_LN2)*I1.val + (0.75 + c.val)/x;    result->err  = c.err/x + fabs(lx)*I1.err;    result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);    return stat_I1;  }  else {    gsl_sf_result K1_scaled;    int stat_K1 = gsl_sf_bessel_K1_scaled_e(x, &K1_scaled);    int stat_e  = gsl_sf_exp_mult_err_e(-x, 0.0,                                           K1_scaled.val, K1_scaled.err,                                           result);    result->err = fabs(result->val) * (GSL_DBL_EPSILON*fabs(x) + K1_scaled.err/K1_scaled.val);    return GSL_ERROR_SELECT_2(stat_e, stat_K1);  }}/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_bessel_K1_scaled(const double x){  EVAL_RESULT(gsl_sf_bessel_K1_scaled_e(x, &result));}double gsl_sf_bessel_K1(const double x){  EVAL_RESULT(gsl_sf_bessel_K1_e(x, &result));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -