📄 legendre_poly.c
字号:
else if(lmax == m + 1) { result_array[0] = p_mm; result_array[1] = p_mmp1; return GSL_SUCCESS; } else { double p_ellm2 = p_mm; double p_ellm1 = p_mmp1; double p_ell = 0.0; int ell; result_array[0] = p_mm; result_array[1] = p_mmp1; for(ell=m+2; ell <= lmax; ell++){ p_ell = (x*(2.0*ell-1.0)*p_ellm1 - (ell+m-1)*p_ellm2) / (ell-m); p_ellm2 = p_ellm1; p_ellm1 = p_ell; result_array[ell-m] = p_ell; } return GSL_SUCCESS; } }}intgsl_sf_legendre_Plm_deriv_array( const int lmax, const int m, const double x, double * result_array, double * result_deriv_array){ if(m < 0 || m > lmax) { GSL_ERROR("m < 0 or m > lmax", GSL_EDOM); } else if(m == 0) { /* It is better to do m=0 this way, so we can more easily * trap the divergent case which can occur when m == 1. */ return gsl_sf_legendre_Pl_deriv_array(lmax, x, result_array, result_deriv_array); } else { int stat_array = gsl_sf_legendre_Plm_array(lmax, m, x, result_array); if(stat_array == GSL_SUCCESS) { int ell; if(m == 1 && (1.0 - fabs(x) < GSL_DBL_EPSILON)) { /* This divergence is real and comes from the cusp-like * behaviour for m = 1. For example, P[1,1] = - Sqrt[1-x^2]. */ GSL_ERROR("divergence near |x| = 1.0 since m = 1", GSL_EOVRFLW); } else if(m == 2 && (1.0 - fabs(x) < GSL_DBL_EPSILON)) { /* m = 2 gives a finite nonzero result for |x| near 1 */ if(fabs(x - 1.0) < GSL_DBL_EPSILON) { for(ell = m; ell <= lmax; ell++) result_deriv_array[ell-m] = -0.25 * x * (ell - 1.0)*ell*(ell+1.0)*(ell+2.0); } else if(fabs(x + 1.0) < GSL_DBL_EPSILON) { for(ell = m; ell <= lmax; ell++) { const double sgn = ( GSL_IS_ODD(ell) ? 1.0 : -1.0 ); result_deriv_array[ell-m] = -0.25 * sgn * x * (ell - 1.0)*ell*(ell+1.0)*(ell+2.0); } } return GSL_SUCCESS; } else { /* m > 2 is easier to deal with since the endpoints always vanish */ if(1.0 - fabs(x) < GSL_DBL_EPSILON) { for(ell = m; ell <= lmax; ell++) result_deriv_array[ell-m] = 0.0; return GSL_SUCCESS; } else { const double diff_a = 1.0 + x; const double diff_b = 1.0 - x; result_deriv_array[0] = - m * x / (diff_a * diff_b) * result_array[0]; if(lmax-m >= 1) result_deriv_array[1] = (2.0 * m + 1.0) * (x * result_deriv_array[0] + result_array[0]); for(ell = m+2; ell <= lmax; ell++) { result_deriv_array[ell-m] = - (ell * x * result_array[ell-m] - (ell+m) * result_array[ell-1-m]) / (diff_a * diff_b); } return GSL_SUCCESS; } } } else { return stat_array; } }}intgsl_sf_legendre_sphPlm_e(const int l, int m, const double x, gsl_sf_result * result){ /* CHECK_POINTER(result) */ if(m < 0 || l < m || x < -1.0 || x > 1.0) { DOMAIN_ERROR(result); } else if(m == 0) { gsl_sf_result P; int stat_P = gsl_sf_legendre_Pl_e(l, x, &P); double pre = sqrt((2.0*l + 1.0)/(4.0*M_PI)); result->val = pre * P.val; result->err = pre * P.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_P; } else if(x == 1.0 || x == -1.0) { /* m > 0 here */ result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { /* m > 0 and |x| < 1 here */ /* Starting value for recursion. * Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) ) (-1)^m (1-x^2)^(m/2) / pi^(1/4) */ gsl_sf_result lncirc; gsl_sf_result lnpoch; double lnpre_val; double lnpre_err; gsl_sf_result ex_pre; double sr; const double sgn = ( GSL_IS_ODD(m) ? -1.0 : 1.0); const double y_mmp1_factor = x * sqrt(2.0*m + 3.0); double y_mm, y_mm_err; double y_mmp1, y_mmp1_err; gsl_sf_log_1plusx_e(-x*x, &lncirc); gsl_sf_lnpoch_e(m, 0.5, &lnpoch); /* Gamma(m+1/2)/Gamma(m) */ lnpre_val = -0.25*M_LNPI + 0.5 * (lnpoch.val + m*lncirc.val); lnpre_err = 0.25*M_LNPI*GSL_DBL_EPSILON + 0.5 * (lnpoch.err + fabs(m)*lncirc.err); /* Compute exp(ln_pre) with error term, avoiding call to gsl_sf_exp_err BJG */ ex_pre.val = exp(lnpre_val); ex_pre.err = 2.0*(sinh(lnpre_err) + GSL_DBL_EPSILON)*ex_pre.val; sr = sqrt((2.0+1.0/m)/(4.0*M_PI)); y_mm = sgn * sr * ex_pre.val; y_mm_err = 2.0 * GSL_DBL_EPSILON * fabs(y_mm) + sr * ex_pre.err; y_mm_err *= 1.0 + 1.0/(GSL_DBL_EPSILON + fabs(1.0-x)); y_mmp1 = y_mmp1_factor * y_mm; y_mmp1_err=fabs(y_mmp1_factor) * y_mm_err; if(l == m){ result->val = y_mm; result->err = y_mm_err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(y_mm); return GSL_SUCCESS; } else if(l == m + 1) { result->val = y_mmp1; result->err = y_mmp1_err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(y_mmp1); return GSL_SUCCESS; } else{ double y_ell = 0.0; int ell; /* Compute Y_l^m, l > m+1, upward recursion on l. */ for(ell=m+2; ell <= l; ell++){ const double rat1 = (double)(ell-m)/(double)(ell+m); const double rat2 = (ell-m-1.0)/(ell+m-1.0); const double factor1 = sqrt(rat1*(2*ell+1)*(2*ell-1)); const double factor2 = sqrt(rat1*rat2*(2*ell+1)/(2*ell-3)); y_ell = (x*y_mmp1*factor1 - (ell+m-1)*y_mm*factor2) / (ell-m); y_mm = y_mmp1; y_mmp1 = y_ell; } result->val = y_ell; result->err = (0.5*(l-m) + 1.0) * GSL_DBL_EPSILON * fabs(y_ell); result->err += fabs(y_mm_err/y_mm) * fabs(y_ell); return GSL_SUCCESS; } }}intgsl_sf_legendre_sphPlm_array(const int lmax, int m, const double x, double * result_array){ /* CHECK_POINTER(result_array) */ if(m < 0 || lmax < m || x < -1.0 || x > 1.0) { GSL_ERROR ("error", GSL_EDOM); } else if(m > 0 && (x == 1.0 || x == -1.0)) { int ell; for(ell=m; ell<=lmax; ell++) result_array[ell-m] = 0.0; return GSL_SUCCESS; } else { double y_mm; double y_mmp1; if(m == 0) { y_mm = 0.5/M_SQRTPI; /* Y00 = 1/sqrt(4pi) */ y_mmp1 = x * M_SQRT3 * y_mm; } else { /* |x| < 1 here */ gsl_sf_result lncirc; gsl_sf_result lnpoch; double lnpre; const double sgn = ( GSL_IS_ODD(m) ? -1.0 : 1.0); gsl_sf_log_1plusx_e(-x*x, &lncirc); gsl_sf_lnpoch_e(m, 0.5, &lnpoch); /* Gamma(m+1/2)/Gamma(m) */ lnpre = -0.25*M_LNPI + 0.5 * (lnpoch.val + m*lncirc.val); y_mm = sqrt((2.0+1.0/m)/(4.0*M_PI)) * sgn * exp(lnpre); y_mmp1 = x * sqrt(2.0*m + 3.0) * y_mm; } if(lmax == m){ result_array[0] = y_mm; return GSL_SUCCESS; } else if(lmax == m + 1) { result_array[0] = y_mm; result_array[1] = y_mmp1; return GSL_SUCCESS; } else{ double y_ell; int ell; result_array[0] = y_mm; result_array[1] = y_mmp1; /* Compute Y_l^m, l > m+1, upward recursion on l. */ for(ell=m+2; ell <= lmax; ell++){ const double rat1 = (double)(ell-m)/(double)(ell+m); const double rat2 = (ell-m-1.0)/(ell+m-1.0); const double factor1 = sqrt(rat1*(2*ell+1)*(2*ell-1)); const double factor2 = sqrt(rat1*rat2*(2*ell+1)/(2*ell-3)); y_ell = (x*y_mmp1*factor1 - (ell+m-1)*y_mm*factor2) / (ell-m); y_mm = y_mmp1; y_mmp1 = y_ell; result_array[ell-m] = y_ell; } } return GSL_SUCCESS; }}intgsl_sf_legendre_sphPlm_deriv_array( const int lmax, const int m, const double x, double * result_array, double * result_deriv_array){ if(m < 0 || lmax < m || x < -1.0 || x > 1.0) { GSL_ERROR ("domain", GSL_EDOM); } else if(m == 0) { /* m = 0 is easy to trap */ const int stat_array = gsl_sf_legendre_Pl_deriv_array(lmax, x, result_array, result_deriv_array); int ell; for(ell = 0; ell <= lmax; ell++) { const double prefactor = sqrt((2.0 * ell + 1.0)/(4.0*M_PI)); result_array[ell] *= prefactor; result_deriv_array[ell] *= prefactor; } return stat_array; } else if(m == 1) { /* Trapping m = 1 is necessary because of the possible divergence. * Recall that this divergence is handled properly in ..._Plm_deriv_array(), * and the scaling factor is not large for small m, so we just scale. */ const int stat_array = gsl_sf_legendre_Plm_deriv_array(lmax, m, x, result_array, result_deriv_array); int ell; for(ell = 1; ell <= lmax; ell++) { const double prefactor = sqrt((2.0 * ell + 1.0)/(ell + 1.0) / (4.0*M_PI*ell)); result_array[ell-1] *= prefactor; result_deriv_array[ell-1] *= prefactor; } return stat_array; } else { /* as for the derivative of P_lm, everything is regular for m >= 2 */ int stat_array = gsl_sf_legendre_sphPlm_array(lmax, m, x, result_array); if(stat_array == GSL_SUCCESS) { int ell; if(1.0 - fabs(x) < GSL_DBL_EPSILON) { for(ell = m; ell <= lmax; ell++) result_deriv_array[ell-m] = 0.0; return GSL_SUCCESS; } else { const double diff_a = 1.0 + x; const double diff_b = 1.0 - x; result_deriv_array[0] = - m * x / (diff_a * diff_b) * result_array[0]; if(lmax-m >= 1) result_deriv_array[1] = sqrt(2.0 * m + 3.0) * (x * result_deriv_array[0] + result_array[0]); for(ell = m+2; ell <= lmax; ell++) { const double c1 = sqrt(((2.0*ell+1.0)/(2.0*ell-1.0)) * ((double)(ell-m)/(double)(ell+m))); result_deriv_array[ell-m] = - (ell * x * result_array[ell-m] - c1 * (ell+m) * result_array[ell-1-m]) / (diff_a * diff_b); } return GSL_SUCCESS; } } else { return stat_array; } }}#ifndef HIDE_INLINE_STATICintgsl_sf_legendre_array_size(const int lmax, const int m){ return lmax-m+1;}#endif/*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/#include "eval.h"double gsl_sf_legendre_P1(const double x){ EVAL_RESULT(gsl_sf_legendre_P1_e(x, &result));}double gsl_sf_legendre_P2(const double x){ EVAL_RESULT(gsl_sf_legendre_P2_e(x, &result));}double gsl_sf_legendre_P3(const double x){ EVAL_RESULT(gsl_sf_legendre_P3_e(x, &result));}double gsl_sf_legendre_Pl(const int l, const double x){ EVAL_RESULT(gsl_sf_legendre_Pl_e(l, x, &result));}double gsl_sf_legendre_Plm(const int l, const int m, const double x){ EVAL_RESULT(gsl_sf_legendre_Plm_e(l, m, x, &result));}double gsl_sf_legendre_sphPlm(const int l, const int m, const double x){ EVAL_RESULT(gsl_sf_legendre_sphPlm_e(l, m, x, &result));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -