⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 elljac.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* specfunc/elljac.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *//* Author:  G. Jungman */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_sf_pow_int.h>#include <gsl/gsl_sf_elljac.h>/* GJ: See [Thompson, Atlas for Computing Mathematical Functions] *//* BJG 2005-07: New algorithm based on Algorithm 5 from Numerische   Mathematik 7, 78-90 (1965) "Numerical Calculation of Elliptic   Integrals and Elliptic Functions" R. Bulirsch.   Minor tweak is to avoid division by zero when sin(x u_l) = 0 by   computing reflected values sn(K-u) cn(K-u) dn(K-u) and using   transformation from Abramowitz & Stegun table 16.8 column "K-u"*/intgsl_sf_elljac_e(double u, double m, double * sn, double * cn, double * dn){  if(fabs(m) > 1.0) {    *sn = 0.0;    *cn = 0.0;    *dn = 0.0;    GSL_ERROR ("|m| > 1.0", GSL_EDOM);  }  else if(fabs(m) < 2.0*GSL_DBL_EPSILON) {    *sn = sin(u);    *cn = cos(u);    *dn = 1.0;    return GSL_SUCCESS;  }  else if(fabs(m - 1.0) < 2.0*GSL_DBL_EPSILON) {    *sn = tanh(u);    *cn = 1.0/cosh(u);    *dn = *cn;    return GSL_SUCCESS;  }  else {    int status = GSL_SUCCESS;    const int N = 16;    double mu[16];    double nu[16];    double c[16];    double d[16];    double sin_umu, cos_umu, t, r;    int n = 0;    mu[0] = 1.0;    nu[0] = sqrt(1.0 - m);    while( fabs(mu[n] - nu[n]) > 4.0 * GSL_DBL_EPSILON * fabs(mu[n]+nu[n])) {      mu[n+1] = 0.5 * (mu[n] + nu[n]);      nu[n+1] = sqrt(mu[n] * nu[n]);      ++n;      if(n >= N - 1) {        status = GSL_EMAXITER;        break;      }    }    sin_umu = sin(u * mu[n]);    cos_umu = cos(u * mu[n]);    /* Since sin(u*mu(n)) can be zero we switch to computing sn(K-u),       cn(K-u), dn(K-u) when |sin| < |cos| */    if (fabs(sin_umu) < fabs(cos_umu))      {        t = sin_umu / cos_umu;                c[n] = mu[n] * t;        d[n] = 1.0;                while(n > 0) {          n--;          c[n] = d[n+1] * c[n+1];          r = (c[n+1] * c[n+1]) / mu[n+1];          d[n] = (r + nu[n]) / (r + mu[n]);          }                *dn = sqrt(1.0-m) / d[n];        *cn = (*dn) * GSL_SIGN(cos_umu) / gsl_hypot(1.0, c[n]);        *sn = (*cn) * c[n] /sqrt(1.0-m);      }    else      {        t = cos_umu / sin_umu;                c[n] = mu[n] * t;        d[n] = 1.0;                while(n > 0) {          --n;          c[n] = d[n+1] * c[n+1];          r = (c[n+1] * c[n+1]) / mu[n+1];          d[n] = (r + nu[n]) / (r + mu[n]);        }                *dn = d[n];        *sn = GSL_SIGN(sin_umu) / gsl_hypot(1.0, c[n]);        *cn = c[n] * (*sn);      }        return status;  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -