📄 deriv.c
字号:
/* deriv/deriv.c * * Copyright (C) 2004 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_deriv.h>static voidcentral_deriv (const gsl_function * f, double x, double h, double *result, double *abserr_round, double *abserr_trunc){ /* Compute the derivative using the 5-point rule (x-h, x-h/2, x, x+h/2, x+h). Note that the central point is not used. Compute the error using the difference between the 5-point and the 3-point rule (x-h,x,x+h). Again the central point is not used. */ double fm1 = GSL_FN_EVAL (f, x - h); double fp1 = GSL_FN_EVAL (f, x + h); double fmh = GSL_FN_EVAL (f, x - h / 2); double fph = GSL_FN_EVAL (f, x + h / 2); double r3 = 0.5 * (fp1 - fm1); double r5 = (4.0 / 3.0) * (fph - fmh) - (1.0 / 3.0) * r3; double e3 = (fabs (fp1) + fabs (fm1)) * GSL_DBL_EPSILON; double e5 = 2.0 * (fabs (fph) + fabs (fmh)) * GSL_DBL_EPSILON + e3; double dy = GSL_MAX (fabs (r3), fabs (r5)) * fabs (x) * GSL_DBL_EPSILON; /* The truncation error in the r5 approximation itself is O(h^4). However, for safety, we estimate the error from r5-r3, which is O(h^2). By scaling h we will minimise this estimated error, not the actual truncation error in r5. */ *result = r5 / h; *abserr_trunc = fabs ((r5 - r3) / h); /* Estimated truncation error O(h^2) */ *abserr_round = fabs (e5 / h) + dy; /* Rounding error (cancellations) */}intgsl_deriv_central (const gsl_function * f, double x, double h, double *result, double *abserr){ double r_0, round, trunc, error; central_deriv (f, x, h, &r_0, &round, &trunc); error = round + trunc; if (round < trunc && (round > 0 && trunc > 0)) { double r_opt, round_opt, trunc_opt, error_opt; /* Compute an optimised stepsize to minimize the total error, using the scaling of the truncation error (O(h^2)) and rounding error (O(1/h)). */ double h_opt = h * pow (round / (2.0 * trunc), 1.0 / 3.0); central_deriv (f, x, h_opt, &r_opt, &round_opt, &trunc_opt); error_opt = round_opt + trunc_opt; /* Check that the new error is smaller, and that the new derivative is consistent with the error bounds of the original estimate. */ if (error_opt < error && fabs (r_opt - r_0) < 4.0 * error) { r_0 = r_opt; error = error_opt; } } *result = r_0; *abserr = error; return GSL_SUCCESS;}static voidforward_deriv (const gsl_function * f, double x, double h, double *result, double *abserr_round, double *abserr_trunc){ /* Compute the derivative using the 4-point rule (x+h/4, x+h/2, x+3h/4, x+h). Compute the error using the difference between the 4-point and the 2-point rule (x+h/2,x+h). */ double f1 = GSL_FN_EVAL (f, x + h / 4.0); double f2 = GSL_FN_EVAL (f, x + h / 2.0); double f3 = GSL_FN_EVAL (f, x + (3.0 / 4.0) * h); double f4 = GSL_FN_EVAL (f, x + h); double r2 = 2.0*(f4 - f2); double r4 = (22.0 / 3.0) * (f4 - f3) - (62.0 / 3.0) * (f3 - f2) + (52.0 / 3.0) * (f2 - f1); /* Estimate the rounding error for r4 */ double e4 = 2 * 20.67 * (fabs (f4) + fabs (f3) + fabs (f2) + fabs (f1)) * GSL_DBL_EPSILON; double dy = GSL_MAX (fabs (r2), fabs (r4)) * fabs (x) * GSL_DBL_EPSILON; /* The truncation error in the r4 approximation itself is O(h^3). However, for safety, we estimate the error from r4-r2, which is O(h). By scaling h we will minimise this estimated error, not the actual truncation error in r4. */ *result = r4 / h; *abserr_trunc = fabs ((r4 - r2) / h); /* Estimated truncation error O(h) */ *abserr_round = fabs (e4 / h) + dy;}intgsl_deriv_forward (const gsl_function * f, double x, double h, double *result, double *abserr){ double r_0, round, trunc, error; forward_deriv (f, x, h, &r_0, &round, &trunc); error = round + trunc; if (round < trunc && (round > 0 && trunc > 0)) { double r_opt, round_opt, trunc_opt, error_opt; /* Compute an optimised stepsize to minimize the total error, using the scaling of the estimated truncation error (O(h)) and rounding error (O(1/h)). */ double h_opt = h * pow (round / (trunc), 1.0 / 2.0); forward_deriv (f, x, h_opt, &r_opt, &round_opt, &trunc_opt); error_opt = round_opt + trunc_opt; /* Check that the new error is smaller, and that the new derivative is consistent with the error bounds of the original estimate. */ if (error_opt < error && fabs (r_opt - r_0) < 4.0 * error) { r_0 = r_opt; error = error_opt; } } *result = r_0; *abserr = error; return GSL_SUCCESS;}intgsl_deriv_backward (const gsl_function * f, double x, double h, double *result, double *abserr){ return gsl_deriv_forward (f, x, -h, result, abserr);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -