⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 deriv.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* deriv/deriv.c *  * Copyright (C) 2004 Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */#include <config.h>#include <stdlib.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_deriv.h>static voidcentral_deriv (const gsl_function * f, double x, double h,               double *result, double *abserr_round, double *abserr_trunc){  /* Compute the derivative using the 5-point rule (x-h, x-h/2, x,     x+h/2, x+h). Note that the central point is not used.       Compute the error using the difference between the 5-point and     the 3-point rule (x-h,x,x+h). Again the central point is not     used. */  double fm1 = GSL_FN_EVAL (f, x - h);  double fp1 = GSL_FN_EVAL (f, x + h);  double fmh = GSL_FN_EVAL (f, x - h / 2);  double fph = GSL_FN_EVAL (f, x + h / 2);  double r3 = 0.5 * (fp1 - fm1);  double r5 = (4.0 / 3.0) * (fph - fmh) - (1.0 / 3.0) * r3;  double e3 = (fabs (fp1) + fabs (fm1)) * GSL_DBL_EPSILON;  double e5 = 2.0 * (fabs (fph) + fabs (fmh)) * GSL_DBL_EPSILON + e3;  double dy = GSL_MAX (fabs (r3), fabs (r5)) * fabs (x) * GSL_DBL_EPSILON;  /* The truncation error in the r5 approximation itself is O(h^4).     However, for safety, we estimate the error from r5-r3, which is     O(h^2).  By scaling h we will minimise this estimated error, not     the actual truncation error in r5. */  *result = r5 / h;  *abserr_trunc = fabs ((r5 - r3) / h); /* Estimated truncation error O(h^2) */  *abserr_round = fabs (e5 / h) + dy;   /* Rounding error (cancellations) */}intgsl_deriv_central (const gsl_function * f, double x, double h,                   double *result, double *abserr){  double r_0, round, trunc, error;  central_deriv (f, x, h, &r_0, &round, &trunc);  error = round + trunc;  if (round < trunc && (round > 0 && trunc > 0))    {      double r_opt, round_opt, trunc_opt, error_opt;      /* Compute an optimised stepsize to minimize the total error,         using the scaling of the truncation error (O(h^2)) and         rounding error (O(1/h)). */      double h_opt = h * pow (round / (2.0 * trunc), 1.0 / 3.0);      central_deriv (f, x, h_opt, &r_opt, &round_opt, &trunc_opt);      error_opt = round_opt + trunc_opt;      /* Check that the new error is smaller, and that the new derivative          is consistent with the error bounds of the original estimate. */      if (error_opt < error && fabs (r_opt - r_0) < 4.0 * error)        {          r_0 = r_opt;          error = error_opt;        }    }  *result = r_0;  *abserr = error;  return GSL_SUCCESS;}static voidforward_deriv (const gsl_function * f, double x, double h,               double *result, double *abserr_round, double *abserr_trunc){  /* Compute the derivative using the 4-point rule (x+h/4, x+h/2,     x+3h/4, x+h).     Compute the error using the difference between the 4-point and     the 2-point rule (x+h/2,x+h).  */  double f1 = GSL_FN_EVAL (f, x + h / 4.0);  double f2 = GSL_FN_EVAL (f, x + h / 2.0);  double f3 = GSL_FN_EVAL (f, x + (3.0 / 4.0) * h);  double f4 = GSL_FN_EVAL (f, x + h);  double r2 = 2.0*(f4 - f2);  double r4 = (22.0 / 3.0) * (f4 - f3) - (62.0 / 3.0) * (f3 - f2) +    (52.0 / 3.0) * (f2 - f1);  /* Estimate the rounding error for r4 */  double e4 = 2 * 20.67 * (fabs (f4) + fabs (f3) + fabs (f2) + fabs (f1)) * GSL_DBL_EPSILON;  double dy = GSL_MAX (fabs (r2), fabs (r4)) * fabs (x) * GSL_DBL_EPSILON;  /* The truncation error in the r4 approximation itself is O(h^3).     However, for safety, we estimate the error from r4-r2, which is     O(h).  By scaling h we will minimise this estimated error, not     the actual truncation error in r4. */  *result = r4 / h;  *abserr_trunc = fabs ((r4 - r2) / h); /* Estimated truncation error O(h) */  *abserr_round = fabs (e4 / h) + dy;}intgsl_deriv_forward (const gsl_function * f, double x, double h,                   double *result, double *abserr){  double r_0, round, trunc, error;  forward_deriv (f, x, h, &r_0, &round, &trunc);  error = round + trunc;  if (round < trunc && (round > 0 && trunc > 0))    {      double r_opt, round_opt, trunc_opt, error_opt;      /* Compute an optimised stepsize to minimize the total error,         using the scaling of the estimated truncation error (O(h)) and         rounding error (O(1/h)). */      double h_opt = h * pow (round / (trunc), 1.0 / 2.0);      forward_deriv (f, x, h_opt, &r_opt, &round_opt, &trunc_opt);      error_opt = round_opt + trunc_opt;      /* Check that the new error is smaller, and that the new derivative          is consistent with the error bounds of the original estimate. */      if (error_opt < error && fabs (r_opt - r_0) < 4.0 * error)        {          r_0 = r_opt;          error = error_opt;        }    }  *result = r_0;  *abserr = error;  return GSL_SUCCESS;}intgsl_deriv_backward (const gsl_function * f, double x, double h,                    double *result, double *abserr){  return gsl_deriv_forward (f, x, -h, result, abserr);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -