⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ptlq.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* linalg/ptlq.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough * Copyright (C) 2004 Joerg Wensch, modifications for LQ.  *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */#include <config.h>#include <stdlib.h>#include <string.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_math.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_permute_vector.h>#include <gsl/gsl_linalg.h>#include "givens.c"#include "apply_givens.c"/* The purpose of this package is to speed up QR-decomposition for   large matrices.  Because QR-decomposition is column oriented, but   GSL uses a row-oriented matrix format, there can considerable   speedup obtained by computing the LQ-decomposition of the   transposed matrix instead.  This package provides LQ-decomposition   and related algorithms.  *//* Factorise a general N x M matrix A into * *   P A = L Q * * where Q is orthogonal (M x M) and L is lower triangular (N x M). * When A is rank deficient, r = rank(A) < n, then the permutation is * used to ensure that the lower n - r columns of L are zero and the first * l rows of Q form an orthonormal basis for the rows of A. * * Q is stored as a packed set of Householder transformations in the * strict upper triangular part of the input matrix. * * L is stored in the diagonal and lower triangle of the input matrix. * * P: column j of P is column k of the identity matrix, where k = * permutation->data[j] * * The full matrix for Q can be obtained as the product * *       Q = Q_k .. Q_2 Q_1 * * where k = MIN(M,N) and * *       Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * *       v_i = [1, m(i,i+1), m(i,i+2), ... , m(i,M)] * * This storage scheme is the same as in LAPACK.  See LAPACK's * dgeqpf.f for details. *  */intgsl_linalg_PTLQ_decomp (gsl_matrix * A, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm){  const size_t N = A->size1;  const size_t M = A->size2;  if (tau->size != GSL_MIN (M, N))    {      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);    }  else if (p->size != N)    {      GSL_ERROR ("permutation size must be N", GSL_EBADLEN);    }  else if (norm->size != N)    {      GSL_ERROR ("norm size must be N", GSL_EBADLEN);    }  else    {      size_t i;      *signum = 1;      gsl_permutation_init (p); /* set to identity */      /* Compute column norms and store in workspace */      for (i = 0; i < N; i++)        {          gsl_vector_view c = gsl_matrix_row (A, i);          double x = gsl_blas_dnrm2 (&c.vector);          gsl_vector_set (norm, i, x);        }      for (i = 0; i < GSL_MIN (M, N); i++)        {          /* Bring the column of largest norm into the pivot position */          double max_norm = gsl_vector_get(norm, i);          size_t j, kmax = i;          for (j = i + 1; j < N; j++)            {              double x = gsl_vector_get (norm, j);              if (x > max_norm)                {                  max_norm = x;                  kmax = j;                }            }          if (kmax != i)            {              gsl_matrix_swap_rows (A, i, kmax);              gsl_permutation_swap (p, i, kmax);              gsl_vector_swap_elements(norm,i,kmax);              (*signum) = -(*signum);            }          /* Compute the Householder transformation to reduce the j-th             column of the matrix to a multiple of the j-th unit vector */          {            gsl_vector_view c_full = gsl_matrix_row (A, i);            gsl_vector_view c = gsl_vector_subvector (&c_full.vector,                                                       i, M - i);            double tau_i = gsl_linalg_householder_transform (&c.vector);            gsl_vector_set (tau, i, tau_i);            /* Apply the transformation to the remaining columns */            if (i + 1 < N)              {                gsl_matrix_view m = gsl_matrix_submatrix (A, i +1, i, N - (i+1), M - i);                gsl_linalg_householder_mh (tau_i, &c.vector, &m.matrix);              }          }          /* Update the norms of the remaining columns too */          if (i + 1 < M)             {              for (j = i + 1; j < N; j++)                {                  double x = gsl_vector_get (norm, j);                  if (x > 0.0)                    {                      double y = 0;                      double temp= gsl_matrix_get (A, j, i) / x;                                        if (fabs (temp) >= 1)                        y = 0.0;                      else                        y = x * sqrt (1 - temp * temp);                                            /* recompute norm to prevent loss of accuracy */                      if (fabs (y / x) < sqrt (20.0) * GSL_SQRT_DBL_EPSILON)                        {                          gsl_vector_view c_full = gsl_matrix_row (A, j);                          gsl_vector_view c =                             gsl_vector_subvector(&c_full.vector,                                                 i+1, M - (i+1));                          y = gsl_blas_dnrm2 (&c.vector);                        }                                        gsl_vector_set (norm, j, y);                    }                }            }        }      return GSL_SUCCESS;    }}intgsl_linalg_PTLQ_decomp2 (const gsl_matrix * A, gsl_matrix * q, gsl_matrix * r, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm){  const size_t N = A->size1;  const size_t M = A->size2;  if (q->size1 != M || q->size2 !=M)     {      GSL_ERROR ("q must be M x M", GSL_EBADLEN);    }  else if (r->size1 != N || r->size2 !=M)    {      GSL_ERROR ("r must be N x M", GSL_EBADLEN);    }  else if (tau->size != GSL_MIN (M, N))    {      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);    }  else if (p->size != N)    {      GSL_ERROR ("permutation size must be N", GSL_EBADLEN);    }  else if (norm->size != N)    {      GSL_ERROR ("norm size must be N", GSL_EBADLEN);    }  gsl_matrix_memcpy (r, A);  gsl_linalg_PTLQ_decomp (r, tau, p, signum, norm);  /* FIXME:  aliased arguments depends on behavior of unpack routine! */  gsl_linalg_LQ_unpack (r, tau, q, r);  return GSL_SUCCESS;}/* Solves the system x^T A = b^T using the P^T L Q  factorisation,   z^T L = b^T Q^T    x = P z;   to obtain x. Based on SLATEC code. */intgsl_linalg_PTLQ_solve_T (const gsl_matrix * QR,                         const gsl_vector * tau,                         const gsl_permutation * p,                         const gsl_vector * b,                         gsl_vector * x){  if (QR->size1 != QR->size2)    {      GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR);    }  else if (QR->size2 != p->size)    {      GSL_ERROR ("matrix size must match permutation size", GSL_EBADLEN);    }  else if (QR->size2 != b->size)    {      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);    }  else if (QR->size1 != x->size)    {      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);    }  else    {      gsl_vector_memcpy (x, b);      gsl_linalg_PTLQ_svx_T (QR, tau, p, x);            return GSL_SUCCESS;    }}intgsl_linalg_PTLQ_svx_T (const gsl_matrix * LQ,                       const gsl_vector * tau,                       const gsl_permutation * p,                       gsl_vector * x){  if (LQ->size1 != LQ->size2)    {      GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR);    }  else if (LQ->size2 != p->size)    {      GSL_ERROR ("matrix size must match permutation size", GSL_EBADLEN);    }  else if (LQ->size1 != x->size)    {      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);    }  else    {      /* compute sol = b^T Q^T */      gsl_linalg_LQ_vecQT (LQ, tau, x);      /* Solve  L^T x = sol, storing x inplace in sol */      gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x);      gsl_permute_vector_inverse (p, x);      return GSL_SUCCESS;    }}intgsl_linalg_PTLQ_LQsolve_T (const gsl_matrix * Q, const gsl_matrix * L,                           const gsl_permutation * p,                           const gsl_vector * b,                           gsl_vector * x){  if (Q->size1 != Q->size2 || L->size1 != L->size2)    {      return GSL_ENOTSQR;    }  else if (Q->size1 != p->size || Q->size1 != L->size1           || Q->size1 != b->size)    {      return GSL_EBADLEN;    }  else    {      /* compute b' = Q b */      gsl_blas_dgemv (CblasNoTrans, 1.0, Q, b, 0.0, x);      /* Solve L^T x = b', storing x inplace */      gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, L, x);      /* Apply permutation to solution in place */      gsl_permute_vector_inverse (p, x);      return GSL_SUCCESS;    }}intgsl_linalg_PTLQ_Lsolve_T (const gsl_matrix * LQ,                        const gsl_permutation * p,                        const gsl_vector * b,                        gsl_vector * x){  if (LQ->size1 != LQ->size2)    {      GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR);    }  else if (LQ->size1 != b->size)    {      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);    }  else if (LQ->size2 != x->size)    {      GSL_ERROR ("matrix size must match x size", GSL_EBADLEN);    }  else if (p->size != x->size)    {      GSL_ERROR ("permutation size must match x size", GSL_EBADLEN);    }  else    {      /* Copy x <- b */      gsl_vector_memcpy (x, b);      /* Solve L^T x = b, storing x inplace */      gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x);      gsl_permute_vector_inverse (p, x);      return GSL_SUCCESS;    }}intgsl_linalg_PTLQ_Lsvx_T (const gsl_matrix * LQ,                        const gsl_permutation * p,                        gsl_vector * x){  if (LQ->size1 != LQ->size2)    {      GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR);    }  else if (LQ->size2 != x->size)    {      GSL_ERROR ("matrix size must match x size", GSL_EBADLEN);    }  else if (p->size != x->size)    {      GSL_ERROR ("permutation size must match x size", GSL_EBADLEN);    }  else    {      /* Solve L^T x = b, storing x inplace */      gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x);      gsl_permute_vector_inverse (p, x);      return GSL_SUCCESS;    }}/* Update a P^T L Q factorisation for P A= L Q ,  A' =  A +  v u^T,                                                 PA' = PA + Pv u^T * P^T L' Q' = P^T LQ + v u^T *       = P^T (L + (P v) u^T Q^T) Q *       = P^T (L + (P v) w^T) Q * * where w = Q^T u. * * Algorithm from Golub and Van Loan, "Matrix Computations", Section * 12.5 (Updating Matrix Factorizations, Rank-One Changes) */intgsl_linalg_PTLQ_update (gsl_matrix * Q, gsl_matrix * L,                        const gsl_permutation * p,                        const gsl_vector * v, gsl_vector * w){  if (Q->size1 != Q->size2 || L->size1 != L->size2)    {      return GSL_ENOTSQR;    }  else if (L->size1 != Q->size2 || v->size != Q->size2 || w->size != Q->size2)    {      return GSL_EBADLEN;    }  else    {      size_t j, k;      const size_t N = Q->size1;      const size_t M = Q->size2;      double w0;      /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0)          J_1^T .... J_(n-1)^T w = +/- |w| e_1         simultaneously applied to L,  H = J_1^T ... J^T_(n-1) L         so that H is upper Hessenberg.  (12.5.2) */      for (k = M - 1; k > 0; k--)        {          double c, s;          double wk = gsl_vector_get (w, k);          double wkm1 = gsl_vector_get (w, k - 1);          create_givens (wkm1, wk, &c, &s);          apply_givens_vec (w, k - 1, k, c, s);          apply_givens_lq (M, N, Q, L, k - 1, k, c, s);        }      w0 = gsl_vector_get (w, 0);      /* Add in v w^T  (Equation 12.5.3) */      for (j = 0; j < N; j++)        {          double lj0 = gsl_matrix_get (L, j, 0);          size_t p_j = gsl_permutation_get (p, j);          double vj = gsl_vector_get (v, p_j);          gsl_matrix_set (L, j, 0, lj0 + w0 * vj);        }      /* Apply Givens transformations L' = G_(n-1)^T ... G_1^T H           Equation 12.5.4 */      for (k = 1; k < N; k++)        {          double c, s;          double diag = gsl_matrix_get (L, k - 1, k - 1);          double offdiag = gsl_matrix_get (L, k - 1, k );          create_givens (diag, offdiag, &c, &s);          apply_givens_lq (M, N, Q, L, k - 1, k, c, s);        }      return GSL_SUCCESS;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -