⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lq.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* linalg/lq.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough * Copyright (C) 2004 Joerg Wensch, modifications for LQ. *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */#include <config.h>#include <stdlib.h>#include <string.h>#include <gsl/gsl_math.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_linalg.h>#define REAL double#include "givens.c"#include "apply_givens.c"/* Note: The standard in numerical linear algebra is to solve A x = b * resp. ||A x - b||_2 -> min by QR-decompositions where x, b are * column vectors. * * When the matrix A has a large number of rows it is much more * efficient to work with the transposed matrix A^T and to solve the * system x^T A = b^T resp. ||x^T A - b^T||_2 -> min.  This is caused * by the row-oriented format in which GSL stores matrices.  Therefore * the QR-decomposition of A has to be replaced by a LQ decomposition * of A^T * * The purpose of this package is to provide the algorithms to compute * the LQ-decomposition and to solve the linear equations resp. least * squares problems.  The dimensions N, M of the matrix are switched * because here A will probably be a transposed matrix.  We write x^T, * b^T,... for vectors the comments to emphasize that they are row * vectors. * * It may even be useful to transpose your matrix explicitly (assumed * that there are no memory restrictions) because this takes O(M x N) * computing time where the decompostion takes O(M x N^2) computing * time.  *//* Factorise a general N x M matrix A into *   *   A = L Q * * where Q is orthogonal (M x M) and L is lower triangular (N x M). * * Q is stored as a packed set of Householder transformations in the * strict upper triangular part of the input matrix. * * R is stored in the diagonal and lower triangle of the input matrix. * * The full matrix for Q can be obtained as the product * *       Q = Q_k .. Q_2 Q_1 * * where k = MIN(M,N) and * *       Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * *       v_i = [1, m(i+1,i), m(i+2,i), ... , m(M,i)] * * This storage scheme is the same as in LAPACK.  */intgsl_linalg_LQ_decomp (gsl_matrix * A, gsl_vector * tau){  const size_t N = A->size1;  const size_t M = A->size2;  if (tau->size != GSL_MIN (M, N))    {      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);    }  else    {      size_t i;      for (i = 0; i < GSL_MIN (M, N); i++)        {          /* Compute the Householder transformation to reduce the j-th             column of the matrix to a multiple of the j-th unit vector */          gsl_vector_view c_full = gsl_matrix_row (A, i);          gsl_vector_view c = gsl_vector_subvector (&(c_full.vector), i, M-i);          double tau_i = gsl_linalg_householder_transform (&(c.vector));          gsl_vector_set (tau, i, tau_i);          /* Apply the transformation to the remaining columns and             update the norms */          if (i + 1 < N)            {              gsl_matrix_view m = gsl_matrix_submatrix (A, i + 1, i, N - (i + 1), M - i );              gsl_linalg_householder_mh (tau_i, &(c.vector), &(m.matrix));            }        }      return GSL_SUCCESS;    }}/* Solves the system x^T A = b^T using the LQ factorisation, *  x^T L = b^T Q^T * * to obtain x. Based on SLATEC code.  */intgsl_linalg_LQ_solve_T (const gsl_matrix * LQ, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x){  if (LQ->size1 != LQ->size2)    {      GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR);    }  else if (LQ->size2 != b->size)    {      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);    }  else if (LQ->size1 != x->size)    {      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);    }  else    {      /* Copy x <- b */      gsl_vector_memcpy (x, b);      /* Solve for x */      gsl_linalg_LQ_svx_T (LQ, tau, x);      return GSL_SUCCESS;    }}/* Solves the system x^T A = b^T in place using the LQ factorisation, * *  x^T L = b^T Q^T * * to obtain x. Based on SLATEC code. */intgsl_linalg_LQ_svx_T (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * x){  if (LQ->size1 != LQ->size2)    {      GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR);    }  else if (LQ->size1 != x->size)    {      GSL_ERROR ("matrix size must match x/rhs size", GSL_EBADLEN);    }  else    {      /* compute rhs = Q^T b */      gsl_linalg_LQ_vecQT (LQ, tau, x);      /* Solve R x = rhs, storing x in-place */      gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x);      return GSL_SUCCESS;    }}/* Find the least squares solution to the overdetermined system * *   x^T A = b^T * * for M >= N using the LQ factorization A = L Q. */intgsl_linalg_LQ_lssolve_T (const gsl_matrix * LQ, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x, gsl_vector * residual){  const size_t N = LQ->size1;  const size_t M = LQ->size2;  if (M < N)    {      GSL_ERROR ("LQ matrix must have M>=N", GSL_EBADLEN);    }  else if (M != b->size)    {      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);    }  else if (N != x->size)    {      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);    }  else if (M != residual->size)    {      GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN);    }  else    {      gsl_matrix_const_view L = gsl_matrix_const_submatrix (LQ, 0, 0, N, N);      gsl_vector_view c = gsl_vector_subvector(residual, 0, N);      gsl_vector_memcpy(residual, b);      /* compute rhs = b^T Q^T */      gsl_linalg_LQ_vecQT (LQ, tau, residual);      /* Solve x^T L = rhs */      gsl_vector_memcpy(x, &(c.vector));      gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, &(L.matrix), x);      /* Compute residual = b^T - x^T A = (b^T Q^T - x^T L) Q */            gsl_vector_set_zero(&(c.vector));      gsl_linalg_LQ_vecQ(LQ, tau, residual);      return GSL_SUCCESS;    }}intgsl_linalg_LQ_Lsolve_T (const gsl_matrix * LQ, const gsl_vector * b, gsl_vector * x){  if (LQ->size1 != LQ->size2)    {      GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR);    }  else if (LQ->size1 != b->size)    {      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);    }  else if (LQ->size1 != x->size)    {      GSL_ERROR ("matrix size must match x size", GSL_EBADLEN);    }  else    {      /* Copy x <- b */      gsl_vector_memcpy (x, b);      /* Solve R x = b, storing x in-place */      gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x);      return GSL_SUCCESS;    }}intgsl_linalg_LQ_Lsvx_T (const gsl_matrix * LQ, gsl_vector * x){  if (LQ->size1 != LQ->size2)    {      GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR);    }  else if (LQ->size2 != x->size)    {      GSL_ERROR ("matrix size must match rhs size", GSL_EBADLEN);    }  else    {      /* Solve x^T L = b^T, storing x in-place */      gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x);      return GSL_SUCCESS;    }}intgsl_linalg_L_solve_T (const gsl_matrix * L, const gsl_vector * b, gsl_vector * x){  if (L->size1 != L->size2)    {      GSL_ERROR ("R matrix must be square", GSL_ENOTSQR);    }  else if (L->size2 != b->size)    {      GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);    }  else if (L->size1 != x->size)    {      GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);    }  else    {      /* Copy x <- b */      gsl_vector_memcpy (x, b);      /* Solve R x = b, storing x inplace in b */      gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, L, x);      return GSL_SUCCESS;    }}intgsl_linalg_LQ_vecQT (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * v){  const size_t N = LQ->size1;  const size_t M = LQ->size2;  if (tau->size != GSL_MIN (M, N))    {      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);    }  else if (v->size != M)    {      GSL_ERROR ("vector size must be M", GSL_EBADLEN);    }  else    {      size_t i;      /* compute v Q^T  */      for (i = 0; i < GSL_MIN (M, N); i++)        {          gsl_vector_const_view c = gsl_matrix_const_row (LQ, i);          gsl_vector_const_view h = gsl_vector_const_subvector (&(c.vector),                                                                i, M - i);          gsl_vector_view w = gsl_vector_subvector (v, i, M - i);          double ti = gsl_vector_get (tau, i);          gsl_linalg_householder_hv (ti, &(h.vector), &(w.vector));        }      return GSL_SUCCESS;    }}intgsl_linalg_LQ_vecQ (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * v){  const size_t N = LQ->size1;  const size_t M = LQ->size2;  if (tau->size != GSL_MIN (M, N))    {      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);    }  else if (v->size != M)    {      GSL_ERROR ("vector size must be M", GSL_EBADLEN);    }  else    {      size_t i;      /* compute v Q^T  */            for (i =  GSL_MIN (M, N); i > 0 && i--;)         {          gsl_vector_const_view c = gsl_matrix_const_row (LQ, i);          gsl_vector_const_view h = gsl_vector_const_subvector (&(c.vector),                                                                i, M - i);          gsl_vector_view w = gsl_vector_subvector (v, i, M - i);          double ti = gsl_vector_get (tau, i);          gsl_linalg_householder_hv (ti, &(h.vector), &(w.vector));        }      return GSL_SUCCESS;    }}/*  Form the orthogonal matrix Q from the packed LQ matrix */intgsl_linalg_LQ_unpack (const gsl_matrix * LQ, const gsl_vector * tau, gsl_matrix * Q, gsl_matrix * L){  const size_t N = LQ->size1;  const size_t M = LQ->size2;  if (Q->size1 != M || Q->size2 != M)    {      GSL_ERROR ("Q matrix must be M x M", GSL_ENOTSQR);    }  else if (L->size1 != N || L->size2 != M)    {      GSL_ERROR ("R matrix must be N x M", GSL_ENOTSQR);    }  else if (tau->size != GSL_MIN (M, N))    {      GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN);    }  else    {      size_t i, j, l_border;      /* Initialize Q to the identity */      gsl_matrix_set_identity (Q);      for (i = GSL_MIN (M, N); i > 0 && i--;)        {          gsl_vector_const_view c = gsl_matrix_const_row (LQ, i);          gsl_vector_const_view h = gsl_vector_const_subvector (&c.vector,                                                                i, M - i);          gsl_matrix_view m = gsl_matrix_submatrix (Q, i, i, M - i, M - i);          double ti = gsl_vector_get (tau, i);          gsl_linalg_householder_mh (ti, &h.vector, &m.matrix);        }      /*  Form the lower triangular matrix L from a packed LQ matrix */      for (i = 0; i < N; i++)        {	    l_border=GSL_MIN(i,M-1);		for (j = 0; j <= l_border ; j++)		    gsl_matrix_set (L, i, j, gsl_matrix_get (LQ, i, j));	    for (j = l_border+1; j < M; j++)		gsl_matrix_set (L, i, j, 0.0);        }      return GSL_SUCCESS;    }}/* Update a LQ factorisation for A= L Q ,  A' = A + v u^T, * L' Q' = LQ + v u^T *       = (L + v u^T Q^T) Q *       = (L + v w^T) Q * * where w = Q u. * * Algorithm from Golub and Van Loan, "Matrix Computations", Section * 12.5 (Updating Matrix Factorizations, Rank-One Changes) */intgsl_linalg_LQ_update (gsl_matrix * Q, gsl_matrix * L,                      const gsl_vector * v, gsl_vector * w){  const size_t N = L->size1;  const size_t M = L->size2;  if (Q->size1 != M || Q->size2 != M)    {      GSL_ERROR ("Q matrix must be N x N if L is M x N", GSL_ENOTSQR);    }  else if (w->size != M)    {      GSL_ERROR ("w must be length N if L is M x N", GSL_EBADLEN);    }  else if (v->size != N)    {      GSL_ERROR ("v must be length M if L is M x N", GSL_EBADLEN);    }  else    {      size_t j, k;      double w0;      /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0)         J_1^T .... J_(n-1)^T w = +/- |w| e_1         simultaneously applied to L,  H = J_1^T ... J^T_(n-1) L         so that H is upper Hessenberg.  (12.5.2) */            for (k = M - 1; k > 0; k--)        {          double c, s;          double wk = gsl_vector_get (w, k);          double wkm1 = gsl_vector_get (w, k - 1);          create_givens (wkm1, wk, &c, &s);          apply_givens_vec (w, k - 1, k, c, s);          apply_givens_lq (M, N, Q, L, k - 1, k, c, s);       }      w0 = gsl_vector_get (w, 0);      /* Add in v w^T  (Equation 12.5.3) */      for (j = 0; j < N; j++)        {          double lj0 = gsl_matrix_get (L, j, 0);          double vj = gsl_vector_get (v, j);          gsl_matrix_set (L, j, 0, lj0 + w0 * vj);        }      /* Apply Givens transformations L' = G_(n-1)^T ... G_1^T H         Equation 12.5.4 */      for (k = 1; k < GSL_MIN(M,N+1); k++)        {          double c, s;          double diag = gsl_matrix_get (L, k - 1, k - 1);          double offdiag = gsl_matrix_get (L, k - 1 , k);          create_givens (diag, offdiag, &c, &s);          apply_givens_lq (M, N, Q, L, k - 1, k, c, s);          gsl_matrix_set (L, k - 1, k, 0.0);    /* exact zero of G^T */        }      return GSL_SUCCESS;    }}intgsl_linalg_LQ_LQsolve (gsl_matrix * Q, gsl_matrix * L, const gsl_vector * b, gsl_vector * x){  const size_t N = L->size1;  const size_t M = L->size2;  if (M != N)    {      return GSL_ENOTSQR;    }  else if (Q->size1 != M || b->size != M || x->size != M)    {      return GSL_EBADLEN;    }  else    {      /* compute sol = b^T Q^T */      gsl_blas_dgemv (CblasNoTrans, 1.0, Q, b, 0.0, x);      /* Solve x^T L = sol, storing x in-place */      gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, L, x);      return GSL_SUCCESS;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -