📄 cholesky.c
字号:
/* Cholesky Decomposition * * Copyright (C) 2000 Thomas Walter * * 03 May 2000: Modified for GSL by Brian Gough * 29 Jul 2005: Additions by Gerard Jungman * Copyright (C) 2000,2001, 2002, 2003, 2005 Brian Gough, Gerard Jungman * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This source is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. *//* * Cholesky decomposition of a symmetrix positive definite matrix. * This is useful to solve the matrix arising in * periodic cubic splines * approximating splines * * This algorithm does: * A = L * L' * with * L := lower left triangle matrix * L' := the transposed form of L. * */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_vector.h>#include <gsl/gsl_matrix.h>#include <gsl/gsl_blas.h>#include <gsl/gsl_linalg.h>static inline doublequiet_sqrt (double x) /* avoids runtime error, for checking matrix for positive definiteness */{ return (x >= 0) ? sqrt(x) : GSL_NAN;}intgsl_linalg_cholesky_decomp (gsl_matrix * A){ const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR("cholesky decomposition requires square matrix", GSL_ENOTSQR); } else { size_t i,j,k; int status = 0; /* Do the first 2 rows explicitly. It is simple, and faster. And * one can return if the matrix has only 1 or 2 rows. */ double A_00 = gsl_matrix_get (A, 0, 0); double L_00 = quiet_sqrt(A_00); if (A_00 <= 0) { status = GSL_EDOM ; } gsl_matrix_set (A, 0, 0, L_00); if (M > 1) { double A_10 = gsl_matrix_get (A, 1, 0); double A_11 = gsl_matrix_get (A, 1, 1); double L_10 = A_10 / L_00; double diag = A_11 - L_10 * L_10; double L_11 = quiet_sqrt(diag); if (diag <= 0) { status = GSL_EDOM; } gsl_matrix_set (A, 1, 0, L_10); gsl_matrix_set (A, 1, 1, L_11); } for (k = 2; k < M; k++) { double A_kk = gsl_matrix_get (A, k, k); for (i = 0; i < k; i++) { double sum = 0; double A_ki = gsl_matrix_get (A, k, i); double A_ii = gsl_matrix_get (A, i, i); gsl_vector_view ci = gsl_matrix_row (A, i); gsl_vector_view ck = gsl_matrix_row (A, k); if (i > 0) { gsl_vector_view di = gsl_vector_subvector(&ci.vector, 0, i); gsl_vector_view dk = gsl_vector_subvector(&ck.vector, 0, i); gsl_blas_ddot (&di.vector, &dk.vector, &sum); } A_ki = (A_ki - sum) / A_ii; gsl_matrix_set (A, k, i, A_ki); } { gsl_vector_view ck = gsl_matrix_row (A, k); gsl_vector_view dk = gsl_vector_subvector (&ck.vector, 0, k); double sum = gsl_blas_dnrm2 (&dk.vector); double diag = A_kk - sum * sum; double L_kk = quiet_sqrt(diag); if (diag <= 0) { status = GSL_EDOM; } gsl_matrix_set (A, k, k, L_kk); } } /* Now copy the transposed lower triangle to the upper triangle, * the diagonal is common. */ for (i = 1; i < M; i++) { for (j = 0; j < i; j++) { double A_ij = gsl_matrix_get (A, i, j); gsl_matrix_set (A, j, i, A_ij); } } if (status == GSL_EDOM) { GSL_ERROR ("matrix must be positive definite", GSL_EDOM); } return GSL_SUCCESS; }}intgsl_linalg_cholesky_solve (const gsl_matrix * LLT, const gsl_vector * b, gsl_vector * x){ if (LLT->size1 != LLT->size2) { GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR); } else if (LLT->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (LLT->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve for c using forward-substitution, L c = b */ gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasNonUnit, LLT, x); /* Perform back-substitution, U x = c */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LLT, x); return GSL_SUCCESS; }}intgsl_linalg_cholesky_svx (const gsl_matrix * LLT, gsl_vector * x){ if (LLT->size1 != LLT->size2) { GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR); } else if (LLT->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* Solve for c using forward-substitution, L c = b */ gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasNonUnit, LLT, x); /* Perform back-substitution, U x = c */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LLT, x); return GSL_SUCCESS; }}intgsl_linalg_cholesky_decomp_unit(gsl_matrix * A, gsl_vector * D){ const size_t N = A->size1; size_t i, j; /* initial Cholesky */ int stat_chol = gsl_linalg_cholesky_decomp(A); if(stat_chol == GSL_SUCCESS) { /* calculate D from diagonal part of initial Cholesky */ for(i = 0; i < N; ++i) { const double C_ii = gsl_matrix_get(A, i, i); gsl_vector_set(D, i, C_ii*C_ii); } /* multiply initial Cholesky by 1/sqrt(D) on the right */ for(i = 0; i < N; ++i) { for(j = 0; j < N; ++j) { gsl_matrix_set(A, i, j, gsl_matrix_get(A, i, j) / sqrt(gsl_vector_get(D, j))); } } /* Because the initial Cholesky contained both L and transpose(L), the result of the multiplication is not symmetric anymore; but the lower triangle _is_ correct. Therefore we reflect it to the upper triangle and declare victory. */ for(i = 0; i < N; ++i) for(j = i + 1; j < N; ++j) gsl_matrix_set(A, i, j, gsl_matrix_get(A, j, i)); } return stat_chol;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -