⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 taus113.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* rng/taus113.c * Copyright (C) 2002 Atakan Gurkan * Based on the file taus.c which has the notice * Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *//* This is a maximally equidistributed combined, collision free    Tausworthe generator, with a period ~2^{113}. The sequence is,   x_n = (z1_n ^ z2_n ^ z3_n ^ z4_n)     b = (((z1_n <<  6) ^ z1_n) >> 13)   z1_{n+1} = (((z1_n & 4294967294) << 18) ^ b)   b = (((z2_n <<  2) ^ z2_n) >> 27)   z2_{n+1} = (((z2_n & 4294967288) <<  2) ^ b)   b = (((z3_n << 13) ^ z3_n) >> 21)   z3_{n+1} = (((z3_n & 4294967280) <<  7) ^ b)   b = (((z4_n <<  3)  ^ z4_n) >> 12)   z4_{n+1} = (((z4_n & 4294967168) << 13) ^ b)   computed modulo 2^32. In the formulas above '^' means exclusive-or    (C-notation), not exponentiation.    The algorithm is for 32-bit integers, hence a bitmask is used to clear    all but least significant 32 bits, after left shifts, to make the code    work on architectures where integers are 64-bit.   The generator is initialized with    zi = (69069 * z{i+1}) MOD 2^32 where z0 is the seed provided   During initialization a check is done to make sure that the initial seeds    have a required number of their most significant bits set.   After this, the state is passed through the RNG 10 times to ensure the   state satisfies a recurrence relation.   References:   P. L'Ecuyer, "Tables of Maximally-Equidistributed Combined LFSR Generators",   Mathematics of Computation, 68, 225 (1999), 261--269.     http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps   P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe Generators",    Mathematics of Computation, 65, 213 (1996), 203--213.     http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps   the online version of the latter contains corrections to the print version.*/#include <config.h>#include <stdlib.h>#include <gsl/gsl_rng.h>#define LCG(n) ((69069UL * n) & 0xffffffffUL)#define MASK 0xffffffffULstatic inline unsigned long int taus113_get (void *vstate);static double taus113_get_double (void *vstate);static void taus113_set (void *state, unsigned long int s);typedef struct{  unsigned long int z1, z2, z3, z4;}taus113_state_t;static inline unsigned longtaus113_get (void *vstate){  taus113_state_t *state = (taus113_state_t *) vstate;  unsigned long b1, b2, b3, b4;  b1 = ((((state->z1 << 6UL) & MASK) ^ state->z1) >> 13UL);  state->z1 = ((((state->z1 & 4294967294UL) << 18UL) & MASK) ^ b1);  b2 = ((((state->z2 << 2UL) & MASK) ^ state->z2) >> 27UL);  state->z2 = ((((state->z2 & 4294967288UL) << 2UL) & MASK) ^ b2);  b3 = ((((state->z3 << 13UL) & MASK) ^ state->z3) >> 21UL);  state->z3 = ((((state->z3 & 4294967280UL) << 7UL) & MASK) ^ b3);  b4 = ((((state->z4 << 3UL) & MASK) ^ state->z4) >> 12UL);  state->z4 = ((((state->z4 & 4294967168UL) << 13UL) & MASK) ^ b4);  return (state->z1 ^ state->z2 ^ state->z3 ^ state->z4);}static doubletaus113_get_double (void *vstate){  return taus113_get (vstate) / 4294967296.0;}static voidtaus113_set (void *vstate, unsigned long int s){  taus113_state_t *state = (taus113_state_t *) vstate;  if (!s)    s = 1UL;                    /* default seed is 1 */  state->z1 = LCG (s);  if (state->z1 < 2UL)    state->z1 += 2UL;  state->z2 = LCG (state->z1);  if (state->z2 < 8UL)    state->z2 += 8UL;  state->z3 = LCG (state->z2);  if (state->z3 < 16UL)    state->z3 += 16UL;  state->z4 = LCG (state->z3);  if (state->z4 < 128UL)    state->z4 += 128UL;  /* Calling RNG ten times to satify recurrence condition */  taus113_get (state);  taus113_get (state);  taus113_get (state);  taus113_get (state);  taus113_get (state);  taus113_get (state);  taus113_get (state);  taus113_get (state);  taus113_get (state);  taus113_get (state);  return;}static const gsl_rng_type taus113_type = {  "taus113",                    /* name */  0xffffffffUL,                 /* RAND_MAX */  0,                            /* RAND_MIN */  sizeof (taus113_state_t),  &taus113_set,  &taus113_get,  &taus113_get_double};const gsl_rng_type *gsl_rng_taus113 = &taus113_type;/*  Rules for analytic calculations using GNU Emacs Calc:    (used to find the values for the test program)  [ LCG(n) := n * 69069 mod (2^32) ]    [ b1(x) := rsh(xor(lsh(x, 6), x), 13),  q1(x) := xor(lsh(and(x, 4294967294), 18), b1(x)),  b2(x) := rsh(xor(lsh(x, 2), x), 27),  q2(x) := xor(lsh(and(x, 4294967288), 2), b2(x)),  b3(x) := rsh(xor(lsh(x, 13), x), 21),  q3(x) := xor(lsh(and(x, 4294967280), 7), b3(x)),  b4(x) := rsh(xor(lsh(x, 3), x), 12),  q4(x) := xor(lsh(and(x, 4294967168), 13), b4(x))  ]    [ S([z1,z2,z3,z4]) := [q1(z1), q2(z2), q3(z3), q4(z4)] ]*/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -