⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tdistinv.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* cdf/tdistinv.c * * Copyright (C) 2002 Jason H. Stover. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA. */#include <config.h>#include <math.h>#include <gsl/gsl_cdf.h>#include <gsl/gsl_math.h>#include <gsl/gsl_randist.h>#include <gsl/gsl_sf_gamma.h>#include <stdio.h>static doubleinv_cornish_fisher (double z, double nu){  double a = 1 / (nu - 0.5);  double b = 48.0 / (a * a);  double cf1 = z * (3 + z * z);  double cf2 = z * (945 + z * z * (360 + z * z * (63 + z * z * 4)));  double y = z - cf1 / b + cf2 / (10 * b * b);  double t = GSL_SIGN (z) * sqrt (nu * expm1 (a * y * y));  return t;}doublegsl_cdf_tdist_Pinv (const double P, const double nu){  double x, ptail;  if (P == 1.0)    {      return GSL_POSINF;    }  else if (P == 0.0)    {      return GSL_NEGINF;    }  if (nu == 1.0)    {      x = tan (M_PI * (P - 0.5));    }  else if (nu == 2.0)    {      double a = 2 * P - 1;      x = a / sqrt (2 * (1 - a * a));    }  ptail = (P < 0.5) ? P : 1 - P;  if (sqrt (M_PI * nu / 2) * ptail > pow (0.05, nu / 2))    {      double xg = gsl_cdf_ugaussian_Pinv (P);      x = inv_cornish_fisher (xg, nu);    }  else    {      /* Use an asymptotic expansion of the tail of integral */      double beta = gsl_sf_beta (0.5, nu / 2);      if (P < 0.5)        {          x = -sqrt (nu) * pow (beta * nu * P, -1.0 / nu);        }      else        {          x = sqrt (nu) * pow (beta * nu * (1 - P), -1.0 / nu);        }      /* Correct nu -> nu/(1+nu/x^2) in the leading term to account         for higher order terms. This avoids overestimating x, which         makes the iteration unstable due to the rapidly decreasing         tails of the distribution. */      x /= sqrt (1 + nu / (x * x));    }  {    double dP, phi;    unsigned int n = 0;  start:    dP = P - gsl_cdf_tdist_P (x, nu);    phi = gsl_ran_tdist_pdf (x, nu);    if (dP == 0.0 || n++ > 32)      goto end;    {      double lambda = dP / phi;      double step0 = lambda;      double step1 = ((nu + 1) * x / (x * x + nu)) * (lambda * lambda / 4.0);      double step = step0;      if (fabs (step1) < fabs (step0))        {          step += step1;        }      if (P > 0.5 && x + step < 0)        x /= 2;      else if (P < 0.5 && x + step > 0)        x /= 2;      else        x += step;      if (fabs (step) > 1e-10 * fabs (x))        goto start;    }  }end:  return x;}doublegsl_cdf_tdist_Qinv (const double Q, const double nu){  double x, qtail;  if (Q == 0.0)    {      return GSL_POSINF;    }  else if (Q == 1.0)    {      return GSL_NEGINF;    }  if (nu == 1.0)    {      x = tan (M_PI * (0.5 - Q));    }  else if (nu == 2.0)    {      double a = 2 * (1 - Q) - 1;      x = a / sqrt (2 * (1 - a * a));    }  qtail = (Q < 0.5) ? Q : 1 - Q;  if (sqrt (M_PI * nu / 2) * qtail > pow (0.05, nu / 2))    {      double xg = gsl_cdf_ugaussian_Qinv (Q);      x = inv_cornish_fisher (xg, nu);    }  else    {      /* Use an asymptotic expansion of the tail of integral */      double beta = gsl_sf_beta (0.5, nu / 2);      if (Q < 0.5)        {          x = sqrt (nu) * pow (beta * nu * Q, -1.0 / nu);        }      else        {          x = -sqrt (nu) * pow (beta * nu * (1 - Q), -1.0 / nu);        }      /* Correct nu -> nu/(1+nu/x^2) in the leading term to account         for higher order terms. This avoids overestimating x, which         makes the iteration unstable due to the rapidly decreasing         tails of the distribution. */      x /= sqrt (1 + nu / (x * x));    }  {    double dQ, phi;    unsigned int n = 0;  start:    dQ = Q - gsl_cdf_tdist_Q (x, nu);    phi = gsl_ran_tdist_pdf (x, nu);    if (dQ == 0.0 || n++ > 32)      goto end;    {      double lambda = - dQ / phi;      double step0 = lambda;      double step1 = ((nu + 1) * x / (x * x + nu)) * (lambda * lambda / 4.0);      double step = step0;      if (fabs (step1) < fabs (step0))        {          step += step1;        }      if (Q < 0.5 && x + step < 0)        x /= 2;      else if (Q > 0.5 && x + step > 0)        x /= 2;      else        x += step;      if (fabs (step) > 1e-10 * fabs (x))        goto start;    }  }end:  return x;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -