⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 levin_u.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* sum/levin_u.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */#include <config.h>#include <gsl/gsl_math.h>#include <gsl/gsl_test.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_sum.h>intgsl_sum_levin_u_accel (const double *array, const size_t array_size,                       gsl_sum_levin_u_workspace * w,                        double *sum_accel, double *abserr){  return gsl_sum_levin_u_minmax (array, array_size,                                 0, array_size - 1, w, sum_accel, abserr);}intgsl_sum_levin_u_minmax (const double *array, const size_t array_size,                        const size_t min_terms, const size_t max_terms,                        gsl_sum_levin_u_workspace * w,                        double *sum_accel, double *abserr){  if (array_size == 0)    {      *sum_accel = 0.0;      *abserr = 0.0;      w->sum_plain = 0.0;      w->terms_used = 0;      return GSL_SUCCESS;    }  else if (array_size == 1)    {      *sum_accel = array[0];      *abserr = 0.0;      w->sum_plain = array[0];      w->terms_used = 1;      return GSL_SUCCESS;    }  else    {      const double SMALL = 0.01;      const size_t nmax = GSL_MAX (max_terms, array_size) - 1;      double noise_n = 0.0, noise_nm1 = 0.0;      double trunc_n = 0.0, trunc_nm1 = 0.0;      double actual_trunc_n = 0.0, actual_trunc_nm1 = 0.0;      double result_n = 0.0, result_nm1 = 0.0;      double variance = 0;      size_t n;      unsigned int i;      int better = 0;      int before = 0;      int converging = 0;      double least_trunc = GSL_DBL_MAX;      double least_trunc_noise = GSL_DBL_MAX;      double least_trunc_result;      /* Calculate specified minimum number of terms.  No convergence         tests are made, and no truncation information is stored.  */      for (n = 0; n < min_terms; n++)        {          const double t = array[n];          result_nm1 = result_n;          gsl_sum_levin_u_step (t, n, nmax, w, &result_n);        }      least_trunc_result = result_n;      variance = 0;      for (i = 0; i < n; i++)        {          double dn = w->dsum[i] * GSL_MACH_EPS * array[i];          variance += dn * dn;        }      noise_n = sqrt (variance);      /* Calculate up to maximum number of terms.  Check truncation         condition.  */      for (; n <= nmax; n++)        {          const double t = array[n];          result_nm1 = result_n;          gsl_sum_levin_u_step (t, n, nmax, w, &result_n);          /* Compute the truncation error directly */          actual_trunc_nm1 = actual_trunc_n;          actual_trunc_n = fabs (result_n - result_nm1);          /* Average results to make a more reliable estimate of the             real truncation error */          trunc_nm1 = trunc_n;          trunc_n = 0.5 * (actual_trunc_n + actual_trunc_nm1);          noise_nm1 = noise_n;          variance = 0;          for (i = 0; i <= n; i++)            {              double dn = w->dsum[i] * GSL_MACH_EPS * array[i];              variance += dn * dn;            }          noise_n = sqrt (variance);          /* Determine if we are in the convergence region.  */          better = (trunc_n < trunc_nm1 || trunc_n < SMALL * fabs (result_n));          converging = converging || (better && before);          before = better;          if (converging)            {              if (trunc_n < least_trunc)                {                  /* Found a low truncation point in the convergence                     region. Save it. */                  least_trunc_result = result_n;                  least_trunc = trunc_n;                  least_trunc_noise = noise_n;                }              if (noise_n > trunc_n / 3.0)                break;              if (trunc_n < 10.0 * GSL_MACH_EPS * fabs (result_n))                break;            }        }      if (converging)        {          /* Stopped in the convergence region.  Return result and             error estimate.  */          *sum_accel = least_trunc_result;          *abserr = GSL_MAX_DBL (least_trunc, least_trunc_noise);          w->terms_used = n;          return GSL_SUCCESS;        }      else        {          /* Never reached the convergence region.  Use the last             calculated values.  */          *sum_accel = result_n;          *abserr = GSL_MAX_DBL (trunc_n, noise_n);          w->terms_used = n;          return GSL_SUCCESS;        }    }}intgsl_sum_levin_u_step (const double term, const size_t n, const size_t nmax,                      gsl_sum_levin_u_workspace * w, double *sum_accel){#define I(i,j) ((i)*(nmax+1) + (j))  if (n == 0)    {      *sum_accel = term;      w->sum_plain = term;      w->q_den[0] = 1.0 / term;      w->q_num[0] = 1.0;      w->dq_den[I (0, 0)] = -1.0 / (term * term);      w->dq_num[I (0, 0)] = 0.0;      w->dsum[0] = 1.0;      return GSL_SUCCESS;    }  else    {      double result;      double factor = 1.0;      double ratio = (double) n / (n + 1.0);      unsigned int i;      int j;      w->sum_plain += term;      w->q_den[n] = 1.0 / (term * (n + 1.0) * (n + 1.0));      w->q_num[n] = w->sum_plain * w->q_den[n];      for (i = 0; i < n; i++)        {          w->dq_den[I (i, n)] = 0;          w->dq_num[I (i, n)] = w->q_den[n];        }      w->dq_den[I (n, n)] = -w->q_den[n] / term;      w->dq_num[I (n, n)] =        w->q_den[n] + w->sum_plain * (w->dq_den[I (n, n)]);      for (j = n - 1; j >= 0; j--)        {          double c = factor * (j + 1) / (n + 1);          factor *= ratio;          w->q_den[j] = w->q_den[j + 1] - c * w->q_den[j];          w->q_num[j] = w->q_num[j + 1] - c * w->q_num[j];          for (i = 0; i < n; i++)            {              w->dq_den[I (i, j)] =                w->dq_den[I (i, j + 1)] - c * w->dq_den[I (i, j)];              w->dq_num[I (i, j)] =                w->dq_num[I (i, j + 1)] - c * w->dq_num[I (i, j)];            }          w->dq_den[I (n, j)] = w->dq_den[I (n, j + 1)];          w->dq_num[I (n, j)] = w->dq_num[I (n, j + 1)];        }      result = w->q_num[0] / w->q_den[0];      *sum_accel = result;      for (i = 0; i <= n; i++)        {          w->dsum[i] =            (w->dq_num[I (i, 0)] -             result * w->dq_den[I (i, 0)]) / w->q_den[0];        }      return GSL_SUCCESS;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -