📄 test.c
字号:
/* interpolation/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *//* Author: G. Jungman */#include <config.h>#include <stddef.h>#include <stdlib.h>#include <stdio.h>#include <math.h>#include <gsl/gsl_test.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_interp.h>#include <gsl/gsl_ieee_utils.h>inttest_bsearch(void){ double x_array[5] = { 0.0, 1.0, 2.0, 3.0, 4.0 }; size_t index_result; int status = 0; int s; /* check an interior point */ index_result = gsl_interp_bsearch(x_array, 1.5, 0, 4); s = (index_result != 1); status += s; gsl_test (s, "simple bsearch"); /* check that we get the last interval if x == last value */ index_result = gsl_interp_bsearch(x_array, 4.0, 0, 4); s = (index_result != 3); status += s; gsl_test (s, "upper endpoint bsearch"); /* check that we get the first interval if x == first value */ index_result = gsl_interp_bsearch(x_array, 0.0, 0, 4); s = (index_result != 0); status += s; gsl_test (s, "lower endpoint bsearch"); /* check that we get correct interior boundary behaviour */ index_result = gsl_interp_bsearch(x_array, 2.0, 0, 4); s = (index_result != 2); status += s; gsl_test (s, "degenerate bsearch"); /* check out of bounds above */ index_result = gsl_interp_bsearch(x_array, 10.0, 0, 4); s = (index_result != 3); status += s; gsl_test (s, "out of bounds bsearch +"); /* check out of bounds below */ index_result = gsl_interp_bsearch(x_array, -10.0, 0, 4); s = (index_result != 0); status += s; gsl_test (s, "out of bounds bsearch -"); return status;}typedef double TEST_FUNC (double);typedef struct _xy_table xy_table;struct _xy_table { double * x; double * y; size_t n; };xy_table make_xy_table (double x[], double y[], size_t n);xy_tablemake_xy_table (double x[], double y[], size_t n){ xy_table t; t.x = x; t.y = y; t.n = n; return t;}static inttest_interp ( const xy_table * data_table, const gsl_interp_type * T, xy_table * test_table, xy_table * test_d_table, xy_table * test_i_table ){ int status = 0, s1, s2, s3; size_t i; gsl_interp_accel *a = gsl_interp_accel_alloc (); gsl_interp *interp = gsl_interp_alloc (T, data_table->n); gsl_interp_init (interp, data_table->x, data_table->y, data_table->n); for (i = 0; i < test_table->n; i++) { double x = test_table->x[i]; double y; double deriv; double integ; double diff_y, diff_deriv, diff_integ; s1 = gsl_interp_eval_e (interp, data_table->x, data_table->y, x, a, &y); s2 = gsl_interp_eval_deriv_e (interp, data_table->x, data_table->y, x, a, &deriv); s3 = gsl_interp_eval_integ_e (interp, data_table->x, data_table->y, test_table->x[0], x, a, &integ); gsl_test (s1, "gsl_interp_eval_e %s", gsl_interp_name(interp)); gsl_test (s2, "gsl_interp_eval_deriv_e %s", gsl_interp_name(interp)); gsl_test (s3, "gsl_interp_eval_integ_e %s", gsl_interp_name(interp)); gsl_test_abs (y, test_table->y[i], 1e-10, "%s %d", gsl_interp_name(interp), i); gsl_test_abs (deriv, test_d_table->y[i], 1e-10, "%s deriv %d", gsl_interp_name(interp), i); gsl_test_abs (integ, test_i_table->y[i], 1e-10, "%s integ %d", gsl_interp_name(interp), i); diff_y = y - test_table->y[i]; diff_deriv = deriv - test_d_table->y[i]; diff_integ = integ - test_i_table->y[i]; if (fabs (diff_y) > 1.e-10 || fabs(diff_deriv) > 1.0e-10 || fabs(diff_integ) > 1.0e-10) { status++; } } gsl_interp_accel_free (a); gsl_interp_free (interp); return status;}static inttest_linear (void){ int s; double data_x[4] = { 0.0, 1.0, 2.0, 3.0 }; double data_y[4] = { 0.0, 1.0, 2.0, 3.0 }; double test_x[6] = { 0.0, 0.5, 1.0, 1.5, 2.5, 3.0 }; double test_y[6] = { 0.0, 0.5, 1.0, 1.5, 2.5, 3.0 }; double test_dy[6] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; double test_iy[6] = { 0.0, 0.125, 0.5, 9.0/8.0, 25.0/8.0, 9.0/2.0 }; xy_table data_table = make_xy_table(data_x, data_y, 4); xy_table test_table = make_xy_table(test_x, test_y, 6); xy_table test_d_table = make_xy_table(test_x, test_dy, 6); xy_table test_i_table = make_xy_table(test_x, test_iy, 6); s = test_interp (&data_table, gsl_interp_linear, &test_table, &test_d_table, &test_i_table); gsl_test (s, "linear interpolation"); return s;}static inttest_polynomial (void){ int s; double data_x[4] = { 0.0, 1.0, 2.0, 3.0 }; double data_y[4] = { 0.0, 1.0, 2.0, 3.0 }; double test_x[6] = { 0.0, 0.5, 1.0, 1.5, 2.5, 3.0 }; double test_y[6] = { 0.0, 0.5, 1.0, 1.5, 2.5, 3.0 }; double test_dy[6] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; double test_iy[6] = { 0.0, 0.125, 0.5, 9.0/8.0, 25.0/8.0, 9.0/2.0 }; xy_table data_table = make_xy_table(data_x, data_y, 4); xy_table test_table = make_xy_table(test_x, test_y, 6); xy_table test_d_table = make_xy_table(test_x, test_dy, 6); xy_table test_i_table = make_xy_table(test_x, test_iy, 6); s = test_interp (&data_table, gsl_interp_polynomial, &test_table, &test_d_table, &test_i_table); gsl_test (s, "polynomial interpolation"); return s;}static inttest_cspline (void){ int s; double data_x[3] = { 0.0, 1.0, 2.0 }; double data_y[3] = { 0.0, 1.0, 2.0 }; double test_x[4] = { 0.0, 0.5, 1.0, 2.0 }; double test_y[4] = { 0.0, 0.5, 1.0, 2.0 }; double test_dy[4] = { 1.0, 1.0, 1.0, 1.0 }; double test_iy[4] = { 0.0, 0.125, 0.5, 2.0 }; xy_table data_table = make_xy_table(data_x, data_y, 3); xy_table test_table = make_xy_table(test_x, test_y, 4); xy_table test_d_table = make_xy_table(test_x, test_dy, 4); xy_table test_i_table = make_xy_table(test_x, test_iy, 4); s = test_interp (&data_table, gsl_interp_cspline, &test_table, &test_d_table, &test_i_table); gsl_test (s, "cspline interpolation"); return s;}static inttest_cspline2 (void){ /* Test taken from Young & Gregory, A Survey of Numerical Mathematics, Vol 1 Chapter 6.8 */ int s; double data_x[6] = { 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 }; double data_y[6] = { 1.0, 0.961538461538461, 0.862068965517241, 0.735294117647059, 0.609756097560976, 0.500000000000000 } ; double test_x[50] = { 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, 0.26, 0.28, 0.30, 0.32, 0.34, 0.36, 0.38, 0.40, 0.42, 0.44, 0.46, 0.48, 0.50, 0.52, 0.54, 0.56, 0.58, 0.60, 0.62, 0.64, 0.66, 0.68, 0.70, 0.72, 0.74, 0.76, 0.78, 0.80, 0.82, 0.84, 0.86, 0.88, 0.90, 0.92, 0.94, 0.96, 0.98 }; double test_y[50] = { 1.000000000000000, 0.997583282975581, 0.995079933416512, 0.992403318788142, 0.989466806555819, 0.986183764184894, 0.982467559140716, 0.978231558888635, 0.973389130893999, 0.967853642622158, 0.961538461538461, 0.954382579685350, 0.946427487413627, 0.937740299651188, 0.928388131325928, 0.918438097365742, 0.907957312698524, 0.897012892252170, 0.885671950954575, 0.874001603733634, 0.862068965517241, 0.849933363488199, 0.837622973848936, 0.825158185056786, 0.812559385569085, 0.799846963843167, 0.787041308336369, 0.774162807506023, 0.761231849809467, 0.748268823704033, 0.735294117647059, 0.722328486073082, 0.709394147325463, 0.696513685724764, 0.683709685591549, 0.671004731246381, 0.658421407009825, 0.645982297202442, 0.633709986144797, 0.621627058157454, 0.609756097560976, 0.598112015427308, 0.586679029833925, 0.575433685609685, 0.564352527583445, 0.553412100584061, 0.542588949440392, 0.531859618981294, 0.521200654035625, 0.510588599432241}; double test_dy[50] = { -0.120113913432180, -0.122279726798445, -0.128777166897241, -0.139606233728568, -0.154766927292426, -0.174259247588814, -0.198083194617734, -0.226238768379184, -0.258725968873165, -0.295544796099676, -0.336695250058719, -0.378333644186652, -0.416616291919835, -0.451543193258270, -0.483114348201955, -0.511329756750890, -0.536189418905076, -0.557693334664512, -0.575841504029200, -0.590633926999137, -0.602070603574326, -0.611319695518765, -0.619549364596455, -0.626759610807396, -0.632950434151589, -0.638121834629033, -0.642273812239728, -0.645406366983674, -0.647519498860871, -0.648613207871319, -0.648687494015019, -0.647687460711257, -0.645558211379322, -0.642299746019212, -0.637912064630930, -0.632395167214473, -0.625749053769843, -0.617973724297039, -0.609069178796061, -0.599035417266910, -0.587872439709585, -0.576731233416743, -0.566762785681043, -0.557967096502484, -0.550344165881066, -0.543893993816790, -0.538616580309654, -0.534511925359660, -0.531580028966807, -0.529820891131095}; double test_iy[50] = { 0.000000000000000, 0.019975905023535, 0.039902753768792, 0.059777947259733, 0.079597153869625, 0.099354309321042, 0.119041616685866, 0.138649546385285, 0.158166836189794, 0.177580491219196, 0.196875783942601, 0.216036382301310, 0.235045759060558, 0.253888601161251, 0.272550937842853, 0.291020140643388, 0.309284923399436, 0.327335342246135, 0.345162795617181, 0.362760024244829, 0.380121111159890, 0.397241442753010, 0.414117280448683, 0.430745332379281, 0.447122714446318, 0.463246950320456, 0.479115971441505, 0.494728117018421, 0.510082134029305, 0.525177177221407, 0.540012809111123, 0.554589001813881, 0.568906157172889, 0.582965126887879, 0.596767214344995, 0.610314174616794, 0.623608214462242, 0.636651992326715, 0.649448618342004, 0.662001654326309, 0.674315113784241, 0.686393423540581, 0.698241001711602, 0.709861835676399, 0.721259443710643, 0.732436874986582, 0.743396709573044, 0.754141058435429, 0.764671563435718, 0.774989397332469 }; xy_table data_table = make_xy_table(data_x, data_y, 6); xy_table test_table = make_xy_table(test_x, test_y, 50); xy_table test_d_table = make_xy_table(test_x, test_dy, 50); xy_table test_i_table = make_xy_table(test_x, test_iy, 50); s = test_interp (&data_table, gsl_interp_cspline, &test_table, &test_d_table, &test_i_table); gsl_test (s, "cspline 1/(1+x^2) interpolation"); return s;}static inttest_cspline3 (void){ /* This data has been chosen to be random (uneven spacing in x and y) and the exact cubic spine solution computed using Octave */ int s; double data_x[7] = { -1.2139767065644265, -0.792590494453907, -0.250954683125019, 0.665867809951305, 0.735655088722706, 0.827622053027153, 1.426592227816582 }; double data_y[7] = { -0.00453877449035645, 0.49763182550668716, 0.17805472016334534, 0.40514493733644485, -0.21595209836959839, 0.47405586764216423, 0.46561462432146072 } ; double test_x[19] = { -1.2139767065644265, -1.0735146358609200, -0.9330525651574135, -0.7925904944539071, -0.6120452240109444, -0.4314999535679818, -0.2509546831250191, 0.0546528145670890, 0.3602603122591972, 0.6658678099513053, 0.6891302362084388, 0.7123926624655723, 0.7356550887227058, 0.7663107434908548, 0.7969663982590039, 0.8276220530271530, 1.0272787779569625, 1.2269355028867721, 1.4265922278165817, }; double test_y[19] = { -0.00453877449035645, 0.25816917628390590, 0.44938881397673230, 0.49763182550668716, 0.31389980410075147, 0.09948951681196887, 0.17805472016334534, 1.27633142487980233, 2.04936553432792001, 0.40514493733644485, 0.13322324792901385, -0.09656315924697809, -0.21595209836959839, -0.13551147728045118, 0.13466779030061801, 0.47405586764216423, 1.68064089899304370, 1.43594739539458649, 0.46561462432146072 }; double test_dy[19] = { 1.955137555965937, 1.700662049790549, 0.937235531264386, -0.335141999612553, -1.401385073563169, -0.674982149482761, 1.844066772628670, 4.202528085784793, -0.284432022227558, -11.616813551408383, -11.272731243226174, -7.994209291156876, -1.781247695200491, 6.373970868827501, 10.597456848997197, 10.889210245308570, 1.803124267866902, -3.648527318598099, -5.465744514086432, }; double test_iy[19] = { 0.000000000000000, 0.018231117234914, 0.069178822023139, 0.137781019634897, 0.213936442847744, 0.249280997744777, 0.267492946016120, 0.471372708120518, 1.014473660088477, 1.477731933018837, 1.483978291717981, 1.484256847945450, 1.480341742628893, 1.474315901028282, 1.473972210647307, 1.483279773396950, 1.728562698140330, 2.057796448999396, 2.253662886537457, }; xy_table data_table = make_xy_table(data_x, data_y, 7); xy_table test_table = make_xy_table(test_x, test_y, 19); xy_table test_d_table = make_xy_table(test_x, test_dy, 19); xy_table test_i_table = make_xy_table(test_x, test_iy, 19); s = test_interp (&data_table, gsl_interp_cspline, &test_table, &test_d_table, &test_i_table); gsl_test (s, "cspline arbitrary data interpolation"); return s;}static inttest_csplinep (void){ /* This data has been chosen to be random (uneven spacing in x and y) and the exact cubic spine solution computed using Octave */ int s; double data_x[11] = { 0.000000000000000, 0.130153674349869, 0.164545962312740, 0.227375461261537, 0.256465324353657, 0.372545206874658, 0.520820016781720, 0.647654717733075, 0.753429306654340, 0.900873984827658, 1.000000000000000, }; double data_y[11] = { 0.000000000000000, 0.729629261832041, 0.859286331568207, 0.989913099419008, 0.999175006262120, 0.717928599519215, -0.130443237213363, -0.800267961158980, -0.999767873040527, -0.583333769240853, -0.000000000000000, } ; double test_x[31] = { 0.000000000000000, 0.043384558116623, 0.086769116233246,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -