📄 specfunc-zeta.texi
字号:
@cindex Zeta functionsThe Riemann zeta function is defined in Abramowitz & Stegun, Section23.2. The functions described in this section are declared in theheader file @file{gsl_sf_zeta.h}.@menu* Riemann Zeta Function::* Riemann Zeta Function Minus One::* Hurwitz Zeta Function::* Eta Function::@end menu@node Riemann Zeta Function@subsection Riemann Zeta FunctionThe Riemann zeta function is defined by the infinite sum @c{$\zeta(s) = \sum_{k=1}^\infty k^{-s}$}@math{\zeta(s) = \sum_@{k=1@}^\infty k^@{-s@}}. @deftypefun double gsl_sf_zeta_int (int @var{n})@deftypefunx int gsl_sf_zeta_int_e (int @var{n}, gsl_sf_result * @var{result})These routines compute the Riemann zeta function @math{\zeta(n)} for integer @var{n},@math{n \ne 1}.@comment Domain: n integer, n != 1@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_zeta (double @var{s})@deftypefunx int gsl_sf_zeta_e (double @var{s}, gsl_sf_result * @var{result})These routines compute the Riemann zeta function @math{\zeta(s)}for arbitrary @var{s},@math{s \ne 1}.@comment Domain: s != 1.0@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW@end deftypefun@node Riemann Zeta Function Minus One@subsection Riemann Zeta Function Minus OneFor large positive argument, the Riemann zeta function approaches one.In this region the fractional part is interesting, and therefore weneed a function to evaluate it explicitly.@deftypefun double gsl_sf_zetam1_int (int @var{n})@deftypefunx int gsl_sf_zetam1_int_e (int @var{n}, gsl_sf_result * @var{result})These routines compute @math{\zeta(n) - 1} for integer @var{n},@math{n \ne 1}.@comment Domain: n integer, n != 1@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_zetam1 (double @var{s})@deftypefunx int gsl_sf_zetam1_e (double @var{s}, gsl_sf_result * @var{result})These routines compute @math{\zeta(s) - 1} for arbitrary @var{s},@math{s \ne 1}.@comment Domain: s != 1.0@comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW@end deftypefun@node Hurwitz Zeta Function@subsection Hurwitz Zeta FunctionThe Hurwitz zeta function is defined by@c{$\zeta(s,q) = \sum_0^\infty (k+q)^{-s}$}@math{\zeta(s,q) = \sum_0^\infty (k+q)^@{-s@}}.@deftypefun double gsl_sf_hzeta (double @var{s}, double @var{q})@deftypefunx int gsl_sf_hzeta_e (double @var{s}, double @var{q}, gsl_sf_result * @var{result})These routines compute the Hurwitz zeta function @math{\zeta(s,q)} for@math{s > 1}, @math{q > 0}.@comment Domain: s > 1.0, q > 0.0@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW@end deftypefun@node Eta Function@subsection Eta FunctionThe eta function is defined by@c{$\eta(s) = (1-2^{1-s}) \zeta(s)$}@math{\eta(s) = (1-2^@{1-s@}) \zeta(s)}.@deftypefun double gsl_sf_eta_int (int @var{n})@deftypefunx int gsl_sf_eta_int_e (int @var{n}, gsl_sf_result * @var{result})These routines compute the eta function @math{\eta(n)} for integer @var{n}.@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_eta (double @var{s})@deftypefunx int gsl_sf_eta_e (double @var{s}, gsl_sf_result * @var{result})These routines compute the eta function @math{\eta(s)} for arbitrary @var{s}.@comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW@end deftypefun
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -