📄 specfunc-bessel.texi
字号:
@comment Domain: lmax >= 0 @comment Conditions: l=0,1,...,lmax @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW@end deftypefun@deftypefun int gsl_sf_bessel_jl_steed_array (int @var{lmax}, double @var{x}, double * @var{jl_x_array})This routine uses Steed's method to compute the values of the regularspherical Bessel functions @math{j_l(x)} for @math{l} from 0 to@var{lmax} inclusive for @c{$lmax \geq 0$}@math{lmax >= 0} and @c{$x \geq 0$}@math{x >= 0}, storing the results in the array@var{result_array}.The Steed/Barnett algorithm is described in @cite{Comp. Phys. Comm.} 21,297 (1981). Steed's method is more stable than therecurrence used in the other functions but is also slower.@comment Domain: lmax >= 0 @comment Conditions: l=0,1,...,lmax @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW@end deftypefun@node Irregular Spherical Bessel Functions@subsection Irregular Spherical Bessel Functions@cindex Irregular Spherical Bessel Functions@deftypefun double gsl_sf_bessel_y0 (double @var{x})@deftypefunx int gsl_sf_bessel_y0_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the irregular spherical Bessel function of zerothorder, @math{y_0(x) = -\cos(x)/x}.@comment Exceptional Return Values: none@end deftypefun@deftypefun double gsl_sf_bessel_y1 (double @var{x})@deftypefunx int gsl_sf_bessel_y1_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the irregular spherical Bessel function of firstorder, @math{y_1(x) = -(\cos(x)/x + \sin(x))/x}.@comment Exceptional Return Values: GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_bessel_y2 (double @var{x})@deftypefunx int gsl_sf_bessel_y2_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the irregular spherical Bessel function of secondorder, @math{y_2(x) = (-3/x^3 + 1/x)\cos(x) - (3/x^2)\sin(x)}.@comment Exceptional Return Values: GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_bessel_yl (int @var{l}, double @var{x})@deftypefunx int gsl_sf_bessel_yl_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result})These routines compute the irregular spherical Bessel function of order @var{l}, @math{y_l(x)}, for @c{$l \geq 0$}@math{l >= 0}.@comment Exceptional Return Values: GSL_EUNDRFLW@end deftypefun@deftypefun int gsl_sf_bessel_yl_array (int @var{lmax}, double @var{x}, double @var{result_array}[])This routine computes the values of the irregular spherical Besselfunctions @math{y_l(x)} for @math{l} from 0 to @var{lmax}inclusive for @c{$lmax \geq 0$}@math{lmax >= 0}, storing the results in the array @var{result_array}.The values are computed using recurrence relations forefficiency, and therefore may differ slightly from the exact values.@comment Domain: lmax >= 0 @comment Conditions: l=0,1,...,lmax @comment Exceptional Return Values: GSL_EUNDRFLW@end deftypefun@node Regular Modified Spherical Bessel Functions@subsection Regular Modified Spherical Bessel Functions@cindex Modified Spherical Bessel Functions@cindex Regular Modified Spherical Bessel FunctionsThe regular modified spherical Bessel functions @math{i_l(x)} are related to the modified Bessel functions of fractional order,@c{$i_l(x) = \sqrt{\pi/(2x)} I_{l+1/2}(x)$}@math{i_l(x) = \sqrt@{\pi/(2x)@} I_@{l+1/2@}(x)}@deftypefun double gsl_sf_bessel_i0_scaled (double @var{x})@deftypefunx int gsl_sf_bessel_i0_scaled_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the scaled regular modified spherical Besselfunction of zeroth order, @math{\exp(-|x|) i_0(x)}.@comment Exceptional Return Values: none@end deftypefun@deftypefun double gsl_sf_bessel_i1_scaled (double @var{x})@deftypefunx int gsl_sf_bessel_i1_scaled_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the scaled regular modified spherical Besselfunction of first order, @math{\exp(-|x|) i_1(x)}.@comment Exceptional Return Values: GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_bessel_i2_scaled (double @var{x})@deftypefunx int gsl_sf_bessel_i2_scaled_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the scaled regular modified spherical Besselfunction of second order, @math{ \exp(-|x|) i_2(x) } @comment Exceptional Return Values: GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_bessel_il_scaled (int @var{l}, double @var{x})@deftypefunx int gsl_sf_bessel_il_scaled_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result})These routines compute the scaled regular modified spherical Besselfunction of order @var{l}, @math{ \exp(-|x|) i_l(x) }@comment Domain: l >= 0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW@end deftypefun@deftypefun int gsl_sf_bessel_il_scaled_array (int @var{lmax}, double @var{x}, double @var{result_array}[])This routine computes the values of the scaled regular modifiedcylindrical Bessel functions @math{\exp(-|x|) i_l(x)} for @math{l} from0 to @var{lmax} inclusive for @c{$lmax \geq 0$}@math{lmax >= 0}, storing the results inthe array @var{result_array}. The values are computed using recurrence relations forefficiency, and therefore may differ slightly from the exact values.@comment Domain: lmax >= 0 @comment Conditions: l=0,1,...,lmax @comment Exceptional Return Values: GSL_EUNDRFLW@end deftypefun@node Irregular Modified Spherical Bessel Functions@subsection Irregular Modified Spherical Bessel Functions@cindex Irregular Modified Spherical Bessel FunctionsThe irregular modified spherical Bessel functions @math{k_l(x)}are related to the irregular modified Bessel functions of fractional order,@c{$k_l(x) = \sqrt{\pi/(2x)} K_{l+1/2}(x)$}@math{k_l(x) = \sqrt@{\pi/(2x)@} K_@{l+1/2@}(x)}.@deftypefun double gsl_sf_bessel_k0_scaled (double @var{x})@deftypefunx int gsl_sf_bessel_k0_scaled_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the scaled irregular modified spherical Besselfunction of zeroth order, @math{\exp(x) k_0(x)}, for @math{x>0}.@comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_bessel_k1_scaled (double @var{x})@deftypefunx int gsl_sf_bessel_k1_scaled_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the scaled irregular modified spherical Besselfunction of first order, @math{\exp(x) k_1(x)}, for @math{x>0}.@comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_bessel_k2_scaled (double @var{x})@deftypefunx int gsl_sf_bessel_k2_scaled_e (double @var{x}, gsl_sf_result * @var{result})These routines compute the scaled irregular modified spherical Besselfunction of second order, @math{\exp(x) k_2(x)}, for @math{x>0}.@comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_bessel_kl_scaled (int @var{l}, double @var{x})@deftypefunx int gsl_sf_bessel_kl_scaled_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result})These routines compute the scaled irregular modified spherical Besselfunction of order @var{l}, @math{\exp(x) k_l(x)}, for @math{x>0}.@comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW@end deftypefun@deftypefun int gsl_sf_bessel_kl_scaled_array (int @var{lmax}, double @var{x}, double @var{result_array}[])This routine computes the values of the scaled irregular modifiedspherical Bessel functions @math{\exp(x) k_l(x)} for @math{l} from0 to @var{lmax} inclusive for @c{$lmax \geq 0$}@math{lmax >= 0} and @math{x>0}, storing the results inthe array @var{result_array}. The values are computed using recurrence relations forefficiency, and therefore may differ slightly from the exact values.@comment Domain: lmax >= 0 @comment Conditions: l=0,1,...,lmax @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW@end deftypefun@node Regular Bessel Function - Fractional Order@subsection Regular Bessel Function---Fractional Order@cindex Fractional Order Bessel Functions@cindex Bessel Functions, Fractional Order@cindex Regular Bessel Functions, Fractional Order@deftypefun double gsl_sf_bessel_Jnu (double @var{nu}, double @var{x})@deftypefunx int gsl_sf_bessel_Jnu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})These routines compute the regular cylindrical Bessel function offractional order @math{\nu}, @math{J_\nu(x)}.@comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW@end deftypefun@deftypefun int gsl_sf_bessel_sequence_Jnu_e (double @var{nu}, gsl_mode_t @var{mode}, size_t @var{size}, double @var{v}[])This function computes the regular cylindrical Bessel function offractional order @math{\nu}, @math{J_\nu(x)}, evaluated at a series of@math{x} values. The array @var{v} of length @var{size} contains the@math{x} values. They are assumed to be strictly ordered and positive.The array is over-written with the values of @math{J_\nu(x_i)}.@comment Exceptional Return Values: GSL_EDOM, GSL_EINVAL@end deftypefun@node Irregular Bessel Functions - Fractional Order@subsection Irregular Bessel Functions---Fractional Order@deftypefun double gsl_sf_bessel_Ynu (double @var{nu}, double @var{x})@deftypefunx int gsl_sf_bessel_Ynu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})These routines compute the irregular cylindrical Bessel function offractional order @math{\nu}, @math{Y_\nu(x)}.@comment Exceptional Return Values: @end deftypefun@node Regular Modified Bessel Functions - Fractional Order@subsection Regular Modified Bessel Functions---Fractional Order@cindex Modified Bessel Functions, Fractional Order@cindex Regular Modified Bessel Functions, Fractional Order@deftypefun double gsl_sf_bessel_Inu (double @var{nu}, double @var{x})@deftypefunx int gsl_sf_bessel_Inu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})These routines compute the regular modified Bessel function offractional order @math{\nu}, @math{I_\nu(x)} for @math{x>0},@math{\nu>0}.@comment Domain: x >= 0, nu >= 0 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW@end deftypefun@deftypefun double gsl_sf_bessel_Inu_scaled (double @var{nu}, double @var{x})@deftypefunx int gsl_sf_bessel_Inu_scaled_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})These routines compute the scaled regular modified Bessel function offractional order @math{\nu}, @math{\exp(-|x|)I_\nu(x)} for @math{x>0},@math{\nu>0}.@comment @math{ \exp(-|x|) I_@{\nu@}(x) } @comment Domain: x >= 0, nu >= 0 @comment Exceptional Return Values: GSL_EDOM@end deftypefun@node Irregular Modified Bessel Functions - Fractional Order@subsection Irregular Modified Bessel Functions---Fractional Order@cindex Irregular Modified Bessel Functions, Fractional Order@deftypefun double gsl_sf_bessel_Knu (double @var{nu}, double @var{x})@deftypefunx int gsl_sf_bessel_Knu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})These routines compute the irregular modified Bessel function offractional order @math{\nu}, @math{K_\nu(x)} for @math{x>0},@math{\nu>0}.@comment Domain: x > 0, nu >= 0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW@end deftypefun@deftypefun double gsl_sf_bessel_lnKnu (double @var{nu}, double @var{x})@deftypefunx int gsl_sf_bessel_lnKnu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})These routines compute the logarithm of the irregular modified Besselfunction of fractional order @math{\nu}, @math{\ln(K_\nu(x))} for@math{x>0}, @math{\nu>0}. @comment Domain: x > 0, nu >= 0 @comment Exceptional Return Values: GSL_EDOM@end deftypefun@deftypefun double gsl_sf_bessel_Knu_scaled (double @var{nu}, double @var{x})@deftypefunx int gsl_sf_bessel_Knu_scaled_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result})These routines compute the scaled irregular modified Bessel function offractional order @math{\nu}, @math{\exp(+|x|) K_\nu(x)} for @math{x>0},@math{\nu>0}.@comment Domain: x > 0, nu >= 0 @comment Exceptional Return Values: GSL_EDOM@end deftypefun@node Zeros of Regular Bessel Functions@subsection Zeros of Regular Bessel Functions@cindex Zeros of Regular Bessel Functions@cindex Regular Bessel Functions, Zeros of @deftypefun double gsl_sf_bessel_zero_J0 (unsigned int @var{s})@deftypefunx int gsl_sf_bessel_zero_J0_e (unsigned int @var{s}, gsl_sf_result * @var{result})These routines compute the location of the @var{s}-th positive zero ofthe Bessel function @math{J_0(x)}.@comment Exceptional Return Values: @end deftypefun@deftypefun double gsl_sf_bessel_zero_J1 (unsigned int @var{s})@deftypefunx int gsl_sf_bessel_zero_J1_e (unsigned int @var{s}, gsl_sf_result * @var{result})These routines compute the location of the @var{s}-th positive zero ofthe Bessel function @math{J_1(x)}.@comment Exceptional Return Values: @end deftypefun@deftypefun double gsl_sf_bessel_zero_Jnu (double @var{nu}, unsigned int @var{s})@deftypefunx int gsl_sf_bessel_zero_Jnu_e (double @var{nu}, unsigned int @var{s}, gsl_sf_result * @var{result})These routines compute the location of the @var{s}-th positive zero ofthe Bessel function @math{J_\nu(x)}. The current implementation does notsupport negative values of @var{nu}. @comment Exceptional Return Values: @end deftypefun
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -