⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rk2simp.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* ode-initval/rk2simp.c *  * Copyright (C) 2004 Tuomo Keskitalo *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *//* Runge-Kutta 2, Gaussian implicit. Also known as implicit midpoint rule.   Non-linear equations solved by linearization, LU-decomposition   and matrix inversion. For reference, see eg.   Ascher, U.M., Petzold, L.R., Computer methods for ordinary   differential and differential-algebraic equations, SIAM,   Philadelphia, 1998. */#include <config.h>#include <stdlib.h>#include <string.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_odeiv.h>#include <gsl/gsl_linalg.h>#include "odeiv_util.h"typedef struct{  double *Y1;  double *y0;  double *y0_orig;  double *ytmp;  double *dfdy;                 /* Jacobian */  double *dfdt;                 /* time derivatives, not used */  double *y_onestep;  gsl_permutation *p;}rk2simp_state_t;static void *rk2simp_alloc (size_t dim){  rk2simp_state_t *state =    (rk2simp_state_t *) malloc (sizeof (rk2simp_state_t));  if (state == 0)    {      GSL_ERROR_NULL ("failed to allocate space for rk2simp_state",                      GSL_ENOMEM);    }  state->Y1 = (double *) malloc (dim * sizeof (double));  if (state->Y1 == 0)    {      free (state);      GSL_ERROR_NULL ("failed to allocate space for Y1", GSL_ENOMEM);    }  state->y0 = (double *) malloc (dim * sizeof (double));  if (state->y0 == 0)    {      free (state->Y1);      free (state);      GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM);    }  state->y0_orig = (double *) malloc (dim * sizeof (double));  if (state->y0_orig == 0)    {      free (state->Y1);      free (state->y0);      free (state);      GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM);    }  state->ytmp = (double *) malloc (dim * sizeof (double));  if (state->ytmp == 0)    {      free (state->Y1);      free (state->y0);      free (state->y0_orig);      free (state);      GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM);    }  state->dfdy = (double *) malloc (dim * dim * sizeof (double));  if (state->dfdy == 0)    {      free (state->Y1);      free (state->y0);      free (state->y0_orig);      free (state->ytmp);      free (state);      GSL_ERROR_NULL ("failed to allocate space for dfdy", GSL_ENOMEM);    }  state->dfdt = (double *) malloc (dim * sizeof (double));  if (state->dfdt == 0)    {      free (state->Y1);      free (state->y0);      free (state->y0_orig);      free (state->ytmp);      free (state->dfdy);      free (state);      GSL_ERROR_NULL ("failed to allocate space for dfdt", GSL_ENOMEM);    }  state->y_onestep = (double *) malloc (dim * sizeof (double));  if (state->y_onestep == 0)    {      free (state->Y1);      free (state->y0);      free (state->y0_orig);      free (state->ytmp);      free (state->dfdy);      free (state->dfdt);      free (state);      GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM);    }  state->p = gsl_permutation_alloc (dim);  if (state->p == 0)    {      free (state->Y1);      free (state->y0);      free (state->y0_orig);      free (state->ytmp);      free (state->dfdy);      free (state->dfdt);      free (state);      GSL_ERROR_NULL ("failed to allocate space for p", GSL_ENOMEM);    }  return state;}static intrk2simp_step (double *y, rk2simp_state_t * state,              const double h, const double t,              const size_t dim, const gsl_odeiv_system * sys){  /* Makes a Runge-Kutta 2nd order semi-implicit advance with step size h.     y0 is initial values of variables y.      The linearized semi-implicit equations to calculate are:     Y1 = y0 + h/2 * (1 - h/2 * df/dy)^(-1) * f(t + h/2, y0)     y = y0 + h * f(t + h/2, Y1)   */  const double *y0 = state->y0;  double *Y1 = state->Y1;  double *ytmp = state->ytmp;  size_t i;  int s, ps;  gsl_matrix_view J = gsl_matrix_view_array (state->dfdy, dim, dim);  /* First solve Y1.      Calculate the inverse matrix (1 - h/2 * df/dy)^-1    */  /* Create matrix to J */  s = GSL_ODEIV_JA_EVAL (sys, t, y0, state->dfdy, state->dfdt);  if (s != GSL_SUCCESS)    {      return s;    }  gsl_matrix_scale (&J.matrix, -h / 2.0);  gsl_matrix_add_diagonal(&J.matrix, 1.0);  /* Invert it by LU-decomposition to invmat */  s += gsl_linalg_LU_decomp (&J.matrix, state->p, &ps);  if (s != GSL_SUCCESS)    {      return GSL_EFAILED;    }  /* Evaluate f(t + h/2, y0) */  s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, y0, ytmp);  if (s != GSL_SUCCESS)    {      return s;    }  /* Calculate Y1 = y0 + h/2 * ((1-h/2 * df/dy)^-1) ytmp */  {    gsl_vector_const_view y0_view = gsl_vector_const_view_array(y0, dim);    gsl_vector_view ytmp_view = gsl_vector_view_array(ytmp, dim);    gsl_vector_view Y1_view = gsl_vector_view_array(Y1, dim);    s = gsl_linalg_LU_solve (&J.matrix, state->p,                              &ytmp_view.vector, &Y1_view.vector);          gsl_vector_scale (&Y1_view.vector, 0.5 * h);    gsl_vector_add (&Y1_view.vector, &y0_view.vector);  }  /* And finally evaluation of f(t + h/2, Y1) and calculation of y */  s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, Y1, ytmp);  if (s != GSL_SUCCESS)    {      return s;    }  for (i = 0; i < dim; i++)    {      y[i] = y0[i] + h * ytmp[i];    }  return s;}static intrk2simp_apply (void *vstate, size_t dim, double t, double h,               double y[], double yerr[], const double dydt_in[],               double dydt_out[], const gsl_odeiv_system * sys){  rk2simp_state_t *state = (rk2simp_state_t *) vstate;  size_t i;  double *y0 = state->y0;  double *y0_orig = state->y0_orig;  double *y_onestep = state->y_onestep;  /* Error estimation is done by step doubling procedure */  DBL_MEMCPY (y0, y, dim);  /* Save initial values in case of failure */  DBL_MEMCPY (y0_orig, y, dim);  /* First traverse h with one step (save to y_onestep) */  DBL_MEMCPY (y_onestep, y, dim);  {    int s = rk2simp_step (y_onestep, state, h, t, dim, sys);    if (s != GSL_SUCCESS)      {        return s;      }  }  /* Then with two steps with half step length (save to y) */  {    int s = rk2simp_step (y, state, h / 2.0, t, dim, sys);    if (s != GSL_SUCCESS)      {        /* Restore original y vector */        DBL_MEMCPY (y, y0_orig, dim);        return s;      }  }  DBL_MEMCPY (y0, y, dim);  {    int s = rk2simp_step (y, state, h / 2.0, t + h / 2.0, dim, sys);    if (s != GSL_SUCCESS)      {        /* Restore original y vector */        DBL_MEMCPY (y, y0_orig, dim);        return s;      }  }  /* Derivatives at output */  if (dydt_out != NULL)    {      int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out);      if (s != GSL_SUCCESS)        {          /* Restore original y vector */          DBL_MEMCPY (y, y0_orig, dim);          return s;        }    }  /* Error estimation */  for (i = 0; i < dim; i++)    {      yerr[i] = 4.0 * (y[i] - y_onestep[i]) / 3.0;    }  return GSL_SUCCESS;}static intrk2simp_reset (void *vstate, size_t dim){  rk2simp_state_t *state = (rk2simp_state_t *) vstate;  DBL_ZERO_MEMSET (state->Y1, dim);  DBL_ZERO_MEMSET (state->y0, dim);  DBL_ZERO_MEMSET (state->y0_orig, dim);  DBL_ZERO_MEMSET (state->ytmp, dim);  DBL_ZERO_MEMSET (state->dfdt, dim * dim);  DBL_ZERO_MEMSET (state->dfdt, dim);  DBL_ZERO_MEMSET (state->y_onestep, dim);  return GSL_SUCCESS;}static unsigned intrk2simp_order (void *vstate){  rk2simp_state_t *state = (rk2simp_state_t *) vstate;  state = 0;                    /* prevent warnings about unused parameters */  return 2;}static voidrk2simp_free (void *vstate){  rk2simp_state_t *state = (rk2simp_state_t *) vstate;  free (state->Y1);  free (state->y0);  free (state->y0_orig);  free (state->ytmp);  free (state->dfdy);  free (state->dfdt);  free (state->y_onestep);  gsl_permutation_free (state->p);  free (state);}static const gsl_odeiv_step_type rk2simp_type = {  "rk2simp",                    /* name */  0,                            /* can use dydt_in? */  1,                            /* gives exact dydt_out? */  &rk2simp_alloc,  &rk2simp_apply,  &rk2simp_reset,  &rk2simp_order,  &rk2simp_free};const gsl_odeiv_step_type *gsl_odeiv_step_rk2simp = &rk2simp_type;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -