⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gear1.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* ode-initval/gear1.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *//* Gear 1. This is the implicit Euler a.k.a backward Euler method. *//* Author:  G. Jungman *//* Error estimation by step doubling, see eg. Ascher, U.M., Petzold,   L.R., Computer methods for ordinary differential and   differential-algebraic equations, SIAM, Philadelphia, 1998.   The method is also described in eg. this reference.*/#include <config.h>#include <stdlib.h>#include <string.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_odeiv.h>#include "odeiv_util.h"typedef struct{  double *k;  double *y0;  double *y0_orig;  double *y_onestep;}gear1_state_t;static void *gear1_alloc (size_t dim){  gear1_state_t *state = (gear1_state_t *) malloc (sizeof (gear1_state_t));  if (state == 0)    {      GSL_ERROR_NULL ("failed to allocate space for gear1_state", GSL_ENOMEM);    }  state->k = (double *) malloc (dim * sizeof (double));  if (state->k == 0)    {      free (state);      GSL_ERROR_NULL ("failed to allocate space for k", GSL_ENOMEM);    }  state->y0 = (double *) malloc (dim * sizeof (double));  if (state->y0 == 0)    {      free (state->k);      free (state);      GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM);    }  state->y0_orig = (double *) malloc (dim * sizeof (double));  if (state->y0_orig == 0)    {      free (state->y0);      free (state->k);      free (state);      GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM);    }  state->y_onestep = (double *) malloc (dim * sizeof (double));  if (state->y_onestep == 0)    {      free (state->y0_orig);      free (state->y0);      free (state->k);      free (state);      GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM);    }  return state;}static intgear1_step (double *y, gear1_state_t *state, 	    const double h, const double t, 	    const size_t dim, const gsl_odeiv_system *sys){  /* Makes an implicit Euler advance with step size h.     y0 is the initial values of variables y.      The implicit matrix equations to solve are:     k = y0 + h * f(t + h, k)     y = y0 + h * f(t + h, k)  */  const int iter_steps = 3;  int nu;  size_t i;  double *y0 = state->y0;  double *k = state->k;  /* Iterative solution of k = y0 + h * f(t + h, k)     Note: This method does not check for convergence of the     iterative solution!   */  for (nu = 0; nu < iter_steps; nu++)     {      int s = GSL_ODEIV_FN_EVAL(sys, t + h, y, k);      if (s != GSL_SUCCESS)	{	  return s;	}           for (i=0; i<dim; i++) 	{	  y[i] = y0[i] + h * k[i];	}    }    return GSL_SUCCESS;}static intgear1_apply(void * vstate,            size_t dim,            double t,            double h,            double y[],            double yerr[],            const double dydt_in[],            double dydt_out[],            const gsl_odeiv_system * sys){  gear1_state_t *state = (gear1_state_t *) vstate;  size_t i;  double *y0 = state->y0;  double *y0_orig = state->y0_orig;  double *y_onestep = state->y_onestep;  /* initialization */  DBL_MEMCPY(y0, y, dim);  /* Save initial values for possible failures */  DBL_MEMCPY (y0_orig, y, dim);  /* First traverse h with one step (save to y_onestep) */  DBL_MEMCPY (y_onestep, y, dim);  {    int s = gear1_step (y_onestep, state, h, t, dim, sys);    if (s != GSL_SUCCESS)       {        return s;      }  }     /* Then with two steps with half step length (save to y) */   {    int s = gear1_step (y, state, h / 2.0, t, dim, sys);    if (s != GSL_SUCCESS)       {        /* Restore original y vector */        DBL_MEMCPY (y, y0_orig, dim);        return s;      }  }  DBL_MEMCPY (y0, y, dim);  {    int s = gear1_step (y, state, h / 2.0, t + h / 2.0, dim, sys);    if (s != GSL_SUCCESS)       {        /* Restore original y vector */        DBL_MEMCPY (y, y0_orig, dim);        return s;      }  }    /* Cleanup update */  if (dydt_out != NULL)     {      int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out);            if (s != GSL_SUCCESS)        {          /* Restore original y vector */          DBL_MEMCPY (y, y0_orig, dim);          return s;        }     }    /* Error estimation */  for (i = 0; i < dim; i++)     {      yerr[i] = 4.0 * (y[i] - y_onestep[i]);    }  return GSL_SUCCESS;}static intgear1_reset (void *vstate, size_t dim){  gear1_state_t *state = (gear1_state_t *) vstate;  DBL_ZERO_MEMSET (state->y_onestep, dim);  DBL_ZERO_MEMSET (state->y0_orig, dim);  DBL_ZERO_MEMSET (state->y0, dim);  DBL_ZERO_MEMSET (state->k, dim);  return GSL_SUCCESS;}static unsigned intgear1_order (void *vstate){  gear1_state_t *state = (gear1_state_t *) vstate;  state = 0; /* prevent warnings about unused parameters */  return 1;}static voidgear1_free (void *vstate){  gear1_state_t *state = (gear1_state_t *) vstate;  free (state->y_onestep);  free (state->y0_orig);  free (state->y0);  free (state->k);  free (state);}static const gsl_odeiv_step_type gear1_type = { "gear1",        /* name */  0,                            /* can use dydt_in? */  1,                            /* gives exact dydt_out? */  &gear1_alloc,  &gear1_apply,  &gear1_reset,  &gear1_order,  &gear1_free};const gsl_odeiv_step_type *gsl_odeiv_step_gear1 = &gear1_type;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -