⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rk4.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* ode-initval/rk4.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *//* Runge-Kutta 4th order, Classical *//* Author:  G. Jungman *//* Reference: Abramowitz & Stegun, section 25.5. equation 25.5.10    Error estimation by step doubling, see eg. Ascher, U.M., Petzold,   L.R., Computer methods for ordinary differential and   differential-algebraic equations, SIAM, Philadelphia, 1998.*/#include <config.h>#include <stdlib.h>#include <string.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_odeiv.h>#include "odeiv_util.h"typedef struct{  double *k;  double *k1;  double *y0;  double *ytmp;  double *y_onestep;}rk4_state_t;static void *rk4_alloc (size_t dim){  rk4_state_t *state = (rk4_state_t *) malloc (sizeof (rk4_state_t));  if (state == 0)    {      GSL_ERROR_NULL ("failed to allocate space for rk4_state", GSL_ENOMEM);    }  state->k = (double *) malloc (dim * sizeof (double));  if (state->k == 0)    {      free (state);      GSL_ERROR_NULL ("failed to allocate space for k", GSL_ENOMEM);    }  state->k1 = (double *) malloc (dim * sizeof (double));  if (state->k1 == 0)    {      free (state);      free (state->k);      GSL_ERROR_NULL ("failed to allocate space for k1", GSL_ENOMEM);    }  state->y0 = (double *) malloc (dim * sizeof (double));  if (state->y0 == 0)    {      free (state->k);      free (state->k1);      free (state);      GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM);    }  state->ytmp = (double *) malloc (dim * sizeof (double));  if (state->ytmp == 0)    {      free (state->y0);      free (state->k);      free (state->k1);      free (state);      GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM);    }  state->y_onestep = (double *) malloc (dim * sizeof (double));  if (state->y_onestep == 0)    {      free (state->ytmp);      free (state->y0);      free (state->k);      free (state->k1);      free (state);      GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM);    }  return state;}static intrk4_step (double *y, const rk4_state_t *state,	  const double h, const double t, const size_t dim,	  const gsl_odeiv_system *sys){  /* Makes a Runge-Kutta 4th order advance with step size h. */    /* initial values of variables y. */  const double *y0 = state->y0;    /* work space */  double *ytmp = state->ytmp;  /* Runge-Kutta coefficients. Contains values of coefficient k1     in the beginning   */  double *k = state->k;  size_t i;  /* k1 step */  for (i = 0; i < dim; i++)    {      y[i] += h / 6.0 * k[i];      ytmp[i] = y0[i] + 0.5 * h * k[i];    }  /* k2 step */  {    int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, k);    if (s != GSL_SUCCESS)      {	return s;      }  }  for (i = 0; i < dim; i++)    {      y[i] += h / 3.0 * k[i];      ytmp[i] = y0[i] + 0.5 * h * k[i];    }  /* k3 step */  {    int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, k);    if (s != GSL_SUCCESS)      {	return s;      }  }  for (i = 0; i < dim; i++)    {      y[i] += h / 3.0 * k[i];      ytmp[i] = y0[i] + h * k[i];    }  /* k4 step */  {    int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp, k);    if (s != GSL_SUCCESS)      {	return s;      }  }  for (i = 0; i < dim; i++)    {      y[i] += h / 6.0 * k[i];    }  return GSL_SUCCESS;}static intrk4_apply (void *vstate,           size_t dim,           double t,           double h,           double y[],           double yerr[],           const double dydt_in[],           double dydt_out[],            const gsl_odeiv_system * sys){  rk4_state_t *state = (rk4_state_t *) vstate;  size_t i;  double *const k = state->k;  double *const k1 = state->k1;  double *const y0 = state->y0;  double *const y_onestep = state->y_onestep;  DBL_MEMCPY (y0, y, dim);  if (dydt_in != NULL)    {      DBL_MEMCPY (k, dydt_in, dim);    }  else    {      int s = GSL_ODEIV_FN_EVAL (sys, t, y0, k);      if (s != GSL_SUCCESS)	{	  return s;	}    }  /* Error estimation is done by step doubling procedure */  /* Save first point derivatives*/    DBL_MEMCPY (k1, k, dim);  /* First traverse h with one step (save to y_onestep) */  DBL_MEMCPY (y_onestep, y, dim);  {    int s = rk4_step (y_onestep, state, h, t, dim, sys);    if (s != GSL_SUCCESS)       {        return s;      }  }  /* Then with two steps with half step length (save to y) */   DBL_MEMCPY (k, k1, dim);  {    int s = rk4_step (y, state, h/2.0, t, dim, sys);    if (s != GSL_SUCCESS)      {	/* Restore original values */	DBL_MEMCPY (y, y0, dim);	return s;    }  }  /* Update before second step */  {    int s = GSL_ODEIV_FN_EVAL (sys, t + h/2.0, y, k);    if (s != GSL_SUCCESS)      {	/* Restore original values */	DBL_MEMCPY (y, y0, dim);	return s;      }  }    /* Save original y0 to k1 for possible failures */  DBL_MEMCPY (k1, y0, dim);  /* Update y0 for second step */  DBL_MEMCPY (y0, y, dim);  {    int s = rk4_step (y, state, h/2.0, t + h/2.0, dim, sys);    if (s != GSL_SUCCESS)      {	/* Restore original values */	DBL_MEMCPY (y, k1, dim);	return s;      }  }  /* Derivatives at output */  if (dydt_out != NULL) {    int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out);    if (s != GSL_SUCCESS)      {	/* Restore original values */	DBL_MEMCPY (y, k1, dim);	return s;      }  }    /* Error estimation     yerr = C * 0.5 * | y(onestep) - y(twosteps) | / (2^order - 1)     constant C is approximately 8.0 to ensure 90% of samples lie within     the error (assuming a gaussian distribution with prior p(sigma)=1/sigma.)  */  for (i = 0; i < dim; i++)    {      yerr[i] = 4.0 * (y[i] - y_onestep[i]) / 15.0;    }  return GSL_SUCCESS;}static intrk4_reset (void *vstate, size_t dim){  rk4_state_t *state = (rk4_state_t *) vstate;  DBL_ZERO_MEMSET (state->k, dim);  DBL_ZERO_MEMSET (state->k1, dim);  DBL_ZERO_MEMSET (state->y0, dim);  DBL_ZERO_MEMSET (state->ytmp, dim);  DBL_ZERO_MEMSET (state->y_onestep, dim);  return GSL_SUCCESS;}static unsigned intrk4_order (void *vstate){  rk4_state_t *state = (rk4_state_t *) vstate;  state = 0; /* prevent warnings about unused parameters */  return 4;}static voidrk4_free (void *vstate){  rk4_state_t *state = (rk4_state_t *) vstate;  free (state->k);  free (state->k1);  free (state->y0);  free (state->ytmp);  free (state->y_onestep);  free (state);}static const gsl_odeiv_step_type rk4_type = { "rk4",    /* name */  1,                            /* can use dydt_in */  1,                            /* gives exact dydt_out */  &rk4_alloc,  &rk4_apply,  &rk4_reset,  &rk4_order,  &rk4_free};const gsl_odeiv_step_type *gsl_odeiv_step_rk4 = &rk4_type;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -