⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rk2imp.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* ode-initval/rk2imp.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. *//* Runge-Kutta 2, Gaussian implicit. Also known as the implicit   midpoint rule. *//* Author:  G. Jungman *//* Error estimation by step doubling, see eg. Ascher, U.M., Petzold,   L.R., Computer methods for ordinary differential and   differential-algebraic equations, SIAM, Philadelphia, 1998.   The method is also described in eg. this reference.*/#include <config.h>#include <stdlib.h>#include <string.h>#include <gsl/gsl_math.h>#include <gsl/gsl_errno.h>#include <gsl/gsl_odeiv.h>#include "odeiv_util.h"typedef struct{  double *Y1;  double *y0;  double *ytmp;  double *y_onestep;  double *y0_orig;}rk2imp_state_t;static void *rk2imp_alloc (size_t dim){  rk2imp_state_t *state = (rk2imp_state_t *) malloc (sizeof (rk2imp_state_t));  if (state == 0)    {      GSL_ERROR_NULL ("failed to allocate space for rk2imp_state",                      GSL_ENOMEM);    }  state->Y1 = (double *) malloc (dim * sizeof (double));  if (state->Y1 == 0)    {      free (state);      GSL_ERROR_NULL ("failed to allocate space for Y1", GSL_ENOMEM);    }  state->ytmp = (double *) malloc (dim * sizeof (double));  if (state->ytmp == 0)    {      free (state->Y1);      free (state);      GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM);    }  state->y0 = (double *) malloc (dim * sizeof (double));  if (state->y0 == 0)    {      free (state->Y1);      free (state->ytmp);      free (state);      GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM);    }  state->y_onestep = (double *) malloc (dim * sizeof (double));  if (state->y_onestep == 0)    {      free (state->Y1);      free (state->ytmp);      free (state->y0);      free (state);      GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM);    }  state->y0_orig = (double *) malloc (dim * sizeof (double));  if (state->y0_orig == 0)    {      free (state->y_onestep);      free (state->Y1);      free (state->ytmp);      free (state->y0);      free (state);      GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM);    }  return state;}static intrk2imp_step (double *y, rk2imp_state_t *state, 	     const double h, const double t, 	     const size_t dim, const gsl_odeiv_system *sys){  /* Makes a Runge-Kutta 2nd order implicit advance with step size h.     y0 is initial values of variables y.      The implicit matrix equations to solve are:     Y1 = y0 + h/2 * f(t + h/2, Y1)     y = y0 + h * f(t + h/2, Y1)  */  const double *y0 = state->y0;  double *Y1 = state->Y1;  double *ytmp = state->ytmp;  int max_iter=3;  int nu;  size_t i;  /* iterative solution of Y1 = y0 + h/2 * f(t + h/2, Y1)      Y1 should include initial values at call.     Note: This method does not check for convergence of the     iterative solution!   */  for (nu = 0; nu < max_iter; nu++)    {      for (i = 0; i < dim; i++)        {          ytmp[i] = y0[i] + 0.5 * h * Y1[i];        }      {	int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, Y1);		if (s != GSL_SUCCESS)	  {	    return s;	  }          }    }    /* assignment */  for (i = 0; i < dim; i++)    {      y[i] = y0[i] + h * Y1[i];    }  return GSL_SUCCESS;}static intrk2imp_apply (void *vstate,              size_t dim,              double t,              double h,              double y[],              double yerr[],              const double dydt_in[],              double dydt_out[], const gsl_odeiv_system * sys){  rk2imp_state_t *state = (rk2imp_state_t *) vstate;  size_t i;  double *Y1 = state->Y1;  double *y0 = state->y0;  double *y_onestep = state->y_onestep;  double *y0_orig = state->y0_orig;  /* Error estimation is done by step doubling procedure */  /* initialization step */  DBL_MEMCPY (y0, y, dim);  /* Save initial values for possible failures */  DBL_MEMCPY (y0_orig, y, dim);  if (dydt_in != NULL)    {      DBL_MEMCPY (Y1, dydt_in, dim);    }  else    {      int s = GSL_ODEIV_FN_EVAL (sys, t, y, Y1);            if (s != GSL_SUCCESS)	{	  return s;	}    }  /* First traverse h with one step (save to y_onestep) */  DBL_MEMCPY (y_onestep, y, dim);  {    int s = rk2imp_step (y_onestep, state, h, t, dim, sys);    if (s != GSL_SUCCESS)       {	return s;      }  } /* Then with two steps with half step length (save to y) */   {      int s = rk2imp_step (y, state, h / 2.0, t, dim, sys);    if (s != GSL_SUCCESS)      {	/* Restore original y vector */	DBL_MEMCPY (y, y0_orig, dim);	return s;      }  }  DBL_MEMCPY (y0, y, dim);  {    int s = GSL_ODEIV_FN_EVAL (sys, t + h / 2.0, y, Y1);          if (s != GSL_SUCCESS)      {	/* Restore original y vector */	DBL_MEMCPY (y, y0_orig, dim);	return s;      }  }  {    int s = rk2imp_step (y, state, h / 2.0, t + h / 2.0, dim, sys);    if (s != GSL_SUCCESS)      {	/* Restore original y vector */	DBL_MEMCPY (y, y0_orig, dim);	return s;      }  }  /* Derivatives at output */  if (dydt_out != NULL)     {      int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out);            if (s != GSL_SUCCESS)	{	  /* Restore original y vector */	  DBL_MEMCPY (y, y0_orig, dim);	  	  return s;	}    }    /* Error estimation */  for (i = 0; i < dim; i++)     {      yerr[i] = 4.0 * (y[i] - y_onestep[i]) / 3.0;    }  return GSL_SUCCESS;}static intrk2imp_reset (void *vstate, size_t dim){  rk2imp_state_t *state = (rk2imp_state_t *) vstate;  DBL_ZERO_MEMSET (state->Y1, dim);  DBL_ZERO_MEMSET (state->ytmp, dim);  DBL_ZERO_MEMSET (state->y0, dim);  DBL_ZERO_MEMSET (state->y_onestep, dim);  DBL_ZERO_MEMSET (state->y0_orig, dim);    return GSL_SUCCESS;}static unsigned intrk2imp_order (void *vstate){  rk2imp_state_t *state = (rk2imp_state_t *) vstate;  state = 0; /* prevent warnings about unused parameters */  return 2;}static voidrk2imp_free (void *vstate){  rk2imp_state_t *state = (rk2imp_state_t *) vstate;  free (state->Y1);  free (state->ytmp);  free (state->y0);  free (state->y_onestep);  free (state->y0_orig);  free (state);}static const gsl_odeiv_step_type rk2imp_type = { "rk2imp",      /* name */  1,                            /* can use dydt_in */  1,                            /* gives exact dydt_out */  &rk2imp_alloc,  &rk2imp_apply,  &rk2imp_reset,  &rk2imp_order,  &rk2imp_free};const gsl_odeiv_step_type *gsl_odeiv_step_rk2imp = &rk2imp_type;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -