⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 exppow.c

📁 This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without ev
💻 C
字号:
/* randist/exppow.c *  * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2006 James Theiler, Brian Gough * Copyright (C) 2006 Giulio Bottazzi *  * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. *  * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */#include <config.h>#include <math.h>#include <gsl/gsl_math.h>#include <gsl/gsl_sf_gamma.h>#include <gsl/gsl_rng.h>#include <gsl/gsl_randist.h>/* The exponential power probability distribution is     p(x) dx = (1/(2 a Gamma(1+1/b))) * exp(-|x/a|^b) dx   for -infty < x < infty. For b = 1 it reduces to the Laplace   distribution.    The exponential power distribution is related to the gamma   distribution by E = a * pow(G(1/b),1/b), where E is an exponential   power variate and G is a gamma variate.   We use this relation for b < 1. For b >=1 we use rejection methods   based on the laplace and gaussian distributions which should be   faster.  For b>4 we revert to the gamma method.   See P. R. Tadikamalla, "Random Sampling from the Exponential Power   Distribution", Journal of the American Statistical Association,   September 1980, Volume 75, Number 371, pages 683-686.   */doublegsl_ran_exppow (const gsl_rng * r, const double a, const double b){  if (b < 1 || b > 4)    {      double u = gsl_rng_uniform (r);      double v = gsl_ran_gamma (r, 1 / b, 1.0);      double z = a * pow (v, 1 / b);      if (u > 0.5)        {          return z;        }      else        {          return -z;        }    }  else if (b == 1)    {      /* Laplace distribution */      return gsl_ran_laplace (r, a);    }  else if (b < 2)    {      /* Use laplace distribution for rejection method, from Tadikamalla */      double x, h, u;      double B = pow (1 / b, 1 / b);      do        {          x = gsl_ran_laplace (r, B);          u = gsl_rng_uniform_pos (r);          h = -pow (fabs (x), b) + fabs (x) / B - 1 + (1 / b);        }      while (log (u) > h);      return a * x;    }  else if (b == 2)    {      /* Gaussian distribution */      return gsl_ran_gaussian (r, a / sqrt (2.0));    }  else    {      /* Use gaussian for rejection method, from Tadikamalla */      double x, h, u;      double B = pow (1 / b, 1 / b);      do        {          x = gsl_ran_gaussian (r, B);          u = gsl_rng_uniform_pos (r);          h = -pow (fabs (x), b) + (x * x) / (2 * B * B) + (1 / b) - 0.5;        }      while (log (u) > h);      return a * x;    }}doublegsl_ran_exppow_pdf (const double x, const double a, const double b){  double p;  double lngamma = gsl_sf_lngamma (1 + 1 / b);  p = (1 / (2 * a)) * exp (-pow (fabs (x / a), b) - lngamma);  return p;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -