⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 iris.names

📁 machine learning, accuracy estimation, cross-validation, bootstrap, ID3, decision trees, decision
💻 NAMES
字号:
| Machine readable .names file for MLC++ library.| Commented UC Irvine .names follows with machine readable info at end of file.| | ------| | 1. Title: Iris Plants Database| | 2. Sources:|      (a) Creator: R.A. Fisher|      (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)|      (c) Date: July, 1988| | 3. Past Usage:|    - Publications: too many to mention!!!  Here are a few.|    1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"|       Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions|       to Mathematical Statistics" (John Wiley, NY, 1950).|    2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.|       (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.|    3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System|       Structure and Classification Rule for Recognition in Partially Exposed|       Environments".  IEEE Transactions on Pattern Analysis and Machine|       Intelligence, Vol. PAMI-2, No. 1, 67-71.|       -- Results:|          -- very low misclassification rates (0% for the setosa class)|    4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE |       Transactions on Information Theory, May 1972, 431-433.|       -- Results:|          -- very low misclassification rates again|    5. See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al's AUTOCLASS II|       conceptual clustering system finds 3 classes in the data.| | 4. Relevant Information:|    --- This is perhaps the best known database to be found in the pattern|        recognition literature.  Fisher's paper is a classic in the field|        and is referenced frequently to this day.  (See Duda & Hart, for|        example.)  The data set contains 3 classes of 50 instances each,|        where each class refers to a type of iris plant.  One class is|        linearly separable from the other 2; the latter are NOT linearly|        separable from each other.|    --- Predicted attribute: class of iris plant.|    --- This is an exceedingly simple domain.| | 5. Number of Instances: 150 (50 in each of three classes)| | 6. Number of Attributes: 4 numeric, predictive attributes and the class| | 7. Attribute Information:|    1. sepal length in cm|    2. sepal width in cm|    3. petal length in cm|    4. petal width in cm|    5. class: |       -- Iris Setosa|       -- Iris Versicolour|       -- Iris Virginica| | 8. Missing Attribute Values: None| | Summary Statistics:| 	         Min  Max   Mean    SD   Class Correlation|    sepal length: 4.3  7.9   5.84  0.83    0.7826   |     sepal width: 2.0  4.4   3.05  0.43   -0.4194|    petal length: 1.0  6.9   3.76  1.76    0.9490  (high!)|     petal width: 0.1  2.5   1.20  0.76    0.9565  (high!)| | 9. Class Distribution: 33.3% for each of 3 classes.|| -----Iris-setosa, Iris-versicolor,Iris-virginica			| classessepal-length:			continuous.sepal-width:			continuous.petal-length:			continuous.petal-width:			continuous.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -