📄 iris.names
字号:
| Machine readable .names file for MLC++ library.| Commented UC Irvine .names follows with machine readable info at end of file.| | ------| | 1. Title: Iris Plants Database| | 2. Sources:| (a) Creator: R.A. Fisher| (b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)| (c) Date: July, 1988| | 3. Past Usage:| - Publications: too many to mention!!! Here are a few.| 1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"| Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions| to Mathematical Statistics" (John Wiley, NY, 1950).| 2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.| (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.| 3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System| Structure and Classification Rule for Recognition in Partially Exposed| Environments". IEEE Transactions on Pattern Analysis and Machine| Intelligence, Vol. PAMI-2, No. 1, 67-71.| -- Results:| -- very low misclassification rates (0% for the setosa class)| 4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE | Transactions on Information Theory, May 1972, 431-433.| -- Results:| -- very low misclassification rates again| 5. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al's AUTOCLASS II| conceptual clustering system finds 3 classes in the data.| | 4. Relevant Information:| --- This is perhaps the best known database to be found in the pattern| recognition literature. Fisher's paper is a classic in the field| and is referenced frequently to this day. (See Duda & Hart, for| example.) The data set contains 3 classes of 50 instances each,| where each class refers to a type of iris plant. One class is| linearly separable from the other 2; the latter are NOT linearly| separable from each other.| --- Predicted attribute: class of iris plant.| --- This is an exceedingly simple domain.| | 5. Number of Instances: 150 (50 in each of three classes)| | 6. Number of Attributes: 4 numeric, predictive attributes and the class| | 7. Attribute Information:| 1. sepal length in cm| 2. sepal width in cm| 3. petal length in cm| 4. petal width in cm| 5. class: | -- Iris Setosa| -- Iris Versicolour| -- Iris Virginica| | 8. Missing Attribute Values: None| | Summary Statistics:| Min Max Mean SD Class Correlation| sepal length: 4.3 7.9 5.84 0.83 0.7826 | sepal width: 2.0 4.4 3.05 0.43 -0.4194| petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)| petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)| | 9. Class Distribution: 33.3% for each of 3 classes.|| -----Iris-setosa, Iris-versicolor,Iris-virginica | classessepal-length: continuous.sepal-width: continuous.petal-length: continuous.petal-width: continuous.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -