⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 statistics.java

📁 这是一个segy数据显示程序
💻 JAVA
字号:
/* =========================================================== * JFreeChart : a free chart library for the Java(tm) platform * =========================================================== * * (C) Copyright 2000-2004, by Object Refinery Limited and Contributors. * * Project Info:  http://www.jfree.org/jfreechart/index.html * * This library is free software; you can redistribute it and/or modify it under the terms * of the GNU Lesser General Public License as published by the Free Software Foundation; * either version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License along with this * library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, MA 02111-1307, USA. * * [Java is a trademark or registered trademark of Sun Microsystems, Inc.  * in the United States and other countries.] * * --------------- * Statistics.java * --------------- * (C) Copyright 2000-2003, by Matthew Wright and Contributors. * * Original Author:  Matthew Wright; * Contributor(s):   David Gilbert (for Object Refinery Limited); * * $Id: Statistics.java,v 1.9 2004/06/02 13:24:17 mungady Exp $ * * Changes (from 08-Nov-2001) * -------------------------- * 08-Nov-2001 : Added standard header and tidied Javadoc comments (DG); *               Moved from JFreeChart to package com.jrefinery.data.* in JCommon class *               library (DG); * 24-Jun-2002 : Removed unnecessary local variable (DG); * 07-Oct-2002 : Fixed errors reported by Checkstyle (DG); * 26-May-2004 : Moved calculateMean() method from BoxAndWhiskerCalculator (DG); * 02-Jun-2004 : Fixed bug in calculateMedian() method (DG); * */package org.jfree.data.statistics;import java.util.ArrayList;import java.util.Collection;import java.util.Collections;import java.util.Iterator;import java.util.List;/** * A utility class that provides some simple statistical functions. */public abstract class Statistics {    /**     * Returns the mean of an array of numbers.     *     * @param values  the values (<code>null</code> permitted, returns <code>Double.NaN</code>).     *     * @return The mean.     */    public static double calculateMean(final Number[] values) {        double result = Double.NaN;        if (values != null && values.length > 0) {            double sum = 0.0;            int counter = 0;            for (; counter < values.length; counter++) {                sum = sum + values[counter].doubleValue();            }            result = (sum / counter);        }        return result;    }    /**     * Returns the mean of a collection of <code>Number</code> objects.     *      * @param values  the values (<code>null</code> permitted, returns <code>Double.NaN</code>).     *      * @return The mean.     */    public static double calculateMean(final Collection values) {                double result = Double.NaN;        int count = 0;        double total = 0.0;        final Iterator iterator = values.iterator();        while (iterator.hasNext()) {            final Object object = iterator.next();            if (object != null && object instanceof Number) {                final Number number = (Number) object;                total = total + number.doubleValue();                count = count + 1;            }        }        if (count > 0) {            result = total / count;        }                return result;            }        /**     * Calculates the median for a list of values (<code>Number</code> objects).  The list     * of values will be sorted first.     *      * @param values  the values.     *      * @return The median.     */    public static double calculateMedian(final List values) {        return calculateMedian(values, true);    }        /**     * Calculates the median for a list of values (<code>Number</code> objects) that are assumed     * to be in ascending order.     *      * @param values  the values.     * @param copyAndSort  a flag that controls whether the list of values is copied and sorted.     *      * @return The median.     */    public static double calculateMedian(List values, boolean copyAndSort) {                double result = Double.NaN;        if (values != null) {            if (copyAndSort) {                int itemCount = values.size();                List copy = new ArrayList(itemCount);                for (int i = 0; i < itemCount; i++) {                    copy.add(i, values.get(i));                   }                Collections.sort(copy);                values = copy;            }            final int count = values.size();            if (count > 0) {                if (count % 2 == 1) {                    if (count > 1) {                        final Number value = (Number) values.get((count - 1) / 2);                        result = value.doubleValue();                    }                    else {                        final Number value = (Number) values.get(0);                        result = value.doubleValue();                    }                }                else {                    final Number value1 = (Number) values.get(count / 2 - 1);                    final Number value2 = (Number) values.get(count / 2);                    result = (value1.doubleValue() + value2.doubleValue()) / 2.0;                }            }        }        return result;    }        /**     * Calculates the median for a sublist within a list of values (<code>Number</code> objects).     *      * @param values  the values (in any order).     * @param start  the start index.     * @param end  the end index.     *      * @return The median.     */    public static double calculateMedian(final List values, final int start, final int end) {        return calculateMedian(values, start, end, true);    }    /**     * Calculates the median for a sublist within a list of values (<code>Number</code> objects).     * The entire list will be sorted if the <code>ascending</code< argument is <code>false</code>.     *      * @param values  the values.     * @param start  the start index.     * @param end  the end index.     * @param copyAndSort  a flag that that controls whether the list of values is copied and      *                     sorted.     *      * @return The median.     */    public static double calculateMedian(final List values, final int start, final int end,                                         boolean copyAndSort) {                double result = Double.NaN;        if (copyAndSort) {            List working = new ArrayList(end - start + 1);            for (int i = start; i <= end; i++) {                working.add(values.get(i));              }            Collections.sort(working);             result = calculateMedian(working, false);        }        else {            final int count = end - start + 1;            if (count > 0) {                if (count % 2 == 1) {                    if (count > 1) {                        final Number value = (Number) values.get(start + (count - 1) / 2);                        result = value.doubleValue();                    }                    else {                        final Number value = (Number) values.get(start);                        result = value.doubleValue();                    }                }                else {                    final Number value1 = (Number) values.get(start + count / 2 - 1);                    final Number value2 = (Number) values.get(start + count / 2);                    result = (value1.doubleValue() + value2.doubleValue()) / 2.0;                }            }        }        return result;                }        /**     * Returns the standard deviation of a set of numbers.     *     * @param data  the data.     *     * @return the standard deviation of a set of numbers.     */    public static double getStdDev(final Number[] data) {        final double avg = getAverage(data);        double sum = 0.0;        for (int counter = 0; counter < data.length; counter++) {            final double diff = data[counter].doubleValue() - avg;            sum = sum + diff * diff;        }        return Math.sqrt(sum / (data.length - 1));    }    /**     * Fits a straight line to a set of (x, y) data, returning the slope and     * intercept.     *     * @param xData  the x-data.     * @param yData  the y-data.     *     * @return a double array with the intercept in [0] and the slope in [1].     */    public static double[] getLinearFit(final Number[] xData, final Number[] yData) {        // check arguments...        if (xData.length != yData.length) {            throw new IllegalArgumentException(                "Statistics.getLinearFit(...): array lengths must be equal.");        }        final double[] result = new double[2];        // slope        result[1] = getSlope(xData, yData);        // intercept        result[0] = getAverage(yData) - result[1] * getAverage(xData);        return result;    }    /**     * Finds the slope of a regression line using least squares.     *     * @param xData  an array of Numbers (the x values).     * @param yData  an array of Numbers (the y values).     *     * @return the slope.     */    public static double getSlope(final Number[] xData, final Number[] yData) {        // check arguments...        if (xData.length != yData.length) {            throw new IllegalArgumentException(                "Statistics.getSlope(...): array lengths must be equal.");        }        // ********* stat function for linear slope ********        // y = a + bx        // a = ybar - b * xbar        //     sum(x * y) - (sum (x) * sum(y)) / n        // b = ------------------------------------        //     sum (x^2) - (sum(x)^2 / n        // *************************************************        // sum of x, x^2, x * y, y        double sx = 0.0, sxx = 0.0, sxy = 0.0, sy = 0.0;        int counter;        for (counter = 0; counter < xData.length; counter++) {            sx = sx + xData[counter].doubleValue();            sxx = sxx + Math.pow(xData[counter].doubleValue(), 2);            sxy = sxy + yData[counter].doubleValue() * xData[counter].doubleValue();            sy = sy + yData[counter].doubleValue();        }        return (sxy - (sx * sy) / counter) / (sxx - (sx * sx) / counter);    }    /**     * Calculates the correlation between two datasets.  Both arrays should contain the same number     * of items.  Null values are treated as zero.     * <P>     * Information about the correlation calculation was obtained from:     *      * http://trochim.human.cornell.edu/kb/statcorr.htm     *      * @param data1  the first dataset.     * @param data2  the second dataset.     *      * @return The correlation.     */    public static double getCorrelation(final Number[] data1, final Number[] data2) {        if (data1 == null) {            throw new IllegalArgumentException("Null 'data1' argument.");        }        if (data2 == null) {            throw new IllegalArgumentException("Null 'data2' argument.");        }        if (data1.length != data2.length) {            throw new IllegalArgumentException(                "'data1' and 'data2' arrays must have same length."            );           }        final int n = data1.length;        double sumX = 0.0;        double sumY = 0.0;        double sumX2 = 0.0;        double sumY2 = 0.0;        double sumXY = 0.0;        for (int i = 0; i < n; i++) {            double x = 0.0;            if (data1[i] != null) {                x = data1[i].doubleValue();               }            double y = 0.0;            if (data2[i] != null) {                y = data2[i].doubleValue();               }            sumX = sumX + x;            sumY = sumY + y;            sumXY = sumXY + (x * y);            sumX2 = sumX2 + (x * x);            sumY2 = sumY2 + (y * y);        }        return (n * sumXY - sumX * sumY)             / Math.pow((n * sumX2 - sumX * sumX) * (n * sumY2 - sumY * sumY), 0.5);          }    /**     * Returns a data set for a moving average on the data set passed in.     *     * @param xData  an array of the x data.     * @param yData  an array of the y data.     * @param period  the number of data points to average     *     * @return a double[][] the length of the data set in the first dimension,     *         with two doubles for x and y in the second dimension     */    public static double[][] getMovingAverage(final Number[] xData,                                               final Number[] yData,                                               final int period) {        // check arguments...        if (xData.length != yData.length) {            throw new IllegalArgumentException(                "Statistics.getMovingAverage(...): array lengths must be equal.");        }        if (period > xData.length) {            throw new IllegalArgumentException(                "Statistics.getMovingAverage(...): period can't be longer than dataset.");        }        final double[][] result = new double[xData.length - period][2];        for (int i = 0; i < result.length; i++) {            result[i][0] = xData[i + period].doubleValue();            // holds the moving average sum            double sum = 0.0;            for (int j = 0; j < period; j++) {                sum += yData[i + j].doubleValue();            }            sum = sum / period;            result[i][1] = sum;        }        return result;    }        //// DEPRECATED CODE /////////////////////////////////////////////////////////////////////////        /**     * Returns the average of a set of numbers.     *     * @param data  the data.     *     * @return The average of a set of numbers.     *      * @deprecated Renamed calculateMean().     */    public static double getAverage(final Number[] data) {        double sum = 0.0;        int counter = 0;        for (; counter < data.length; counter++) {            sum = sum + data[counter].doubleValue();        }        return (sum / counter);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -