⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sqliteint.h

📁 sqlite 3.3.8 支持加密的版本
💻 H
📖 第 1 页 / 共 5 页
字号:
  void (*xFinalize)(sqlite3_context*);                /* Aggregate finializer */
  char zName[1];       /* SQL name of the function.  MUST BE LAST */
};

/*
** Each SQLite module (virtual table definition) is defined by an
** instance of the following structure, stored in the sqlite3.aModule
** hash table.
*/
struct Module {
  const sqlite3_module *pModule;       /* Callback pointers */
  const char *zName;                   /* Name passed to create_module() */
  void *pAux;                          /* pAux passed to create_module() */
};

/*
** Possible values for FuncDef.flags
*/
#define SQLITE_FUNC_LIKE   0x01  /* Candidate for the LIKE optimization */
#define SQLITE_FUNC_CASE   0x02  /* Case-sensitive LIKE-type function */
#define SQLITE_FUNC_EPHEM  0x04  /* Ephermeral.  Delete with VDBE */

/*
** information about each column of an SQL table is held in an instance
** of this structure.
*/
struct Column {
  char *zName;     /* Name of this column */
  Expr *pDflt;     /* Default value of this column */
  char *zType;     /* Data type for this column */
  char *zColl;     /* Collating sequence.  If NULL, use the default */
  u8 notNull;      /* True if there is a NOT NULL constraint */
  u8 isPrimKey;    /* True if this column is part of the PRIMARY KEY */
  char affinity;   /* One of the SQLITE_AFF_... values */
};

/*
** A "Collating Sequence" is defined by an instance of the following
** structure. Conceptually, a collating sequence consists of a name and
** a comparison routine that defines the order of that sequence.
**
** There may two seperate implementations of the collation function, one
** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
** native byte order. When a collation sequence is invoked, SQLite selects
** the version that will require the least expensive encoding
** translations, if any.
**
** The CollSeq.pUser member variable is an extra parameter that passed in
** as the first argument to the UTF-8 comparison function, xCmp.
** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
** xCmp16.
**
** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
** collating sequence is undefined.  Indices built on an undefined
** collating sequence may not be read or written.
*/
struct CollSeq {
  char *zName;         /* Name of the collating sequence, UTF-8 encoded */
  u8 enc;              /* Text encoding handled by xCmp() */
  u8 type;             /* One of the SQLITE_COLL_... values below */
  void *pUser;         /* First argument to xCmp() */
  int (*xCmp)(void*,int, const void*, int, const void*);
};

/*
** Allowed values of CollSeq flags:
*/
#define SQLITE_COLL_BINARY  1  /* The default memcmp() collating sequence */
#define SQLITE_COLL_NOCASE  2  /* The built-in NOCASE collating sequence */
#define SQLITE_COLL_REVERSE 3  /* The built-in REVERSE collating sequence */
#define SQLITE_COLL_USER    0  /* Any other user-defined collating sequence */

/*
** A sort order can be either ASC or DESC.
*/
#define SQLITE_SO_ASC       0  /* Sort in ascending order */
#define SQLITE_SO_DESC      1  /* Sort in ascending order */

/*
** Column affinity types.
**
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
** the speed a little by number the values consecutively.  
**
** But rather than start with 0 or 1, we begin with 'a'.  That way,
** when multiple affinity types are concatenated into a string and
** used as the P3 operand, they will be more readable.
**
** Note also that the numeric types are grouped together so that testing
** for a numeric type is a single comparison.
*/
#define SQLITE_AFF_TEXT     'a'
#define SQLITE_AFF_NONE     'b'
#define SQLITE_AFF_NUMERIC  'c'
#define SQLITE_AFF_INTEGER  'd'
#define SQLITE_AFF_REAL     'e'

#define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)

/*
** Each SQL table is represented in memory by an instance of the
** following structure.
**
** Table.zName is the name of the table.  The case of the original
** CREATE TABLE statement is stored, but case is not significant for
** comparisons.
**
** Table.nCol is the number of columns in this table.  Table.aCol is a
** pointer to an array of Column structures, one for each column.
**
** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
** the column that is that key.   Otherwise Table.iPKey is negative.  Note
** that the datatype of the PRIMARY KEY must be INTEGER for this field to
** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
** is generated for each row of the table.  Table.hasPrimKey is true if
** the table has any PRIMARY KEY, INTEGER or otherwise.
**
** Table.tnum is the page number for the root BTree page of the table in the
** database file.  If Table.iDb is the index of the database table backend
** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
** holds temporary tables and indices.  If Table.isEphem
** is true, then the table is stored in a file that is automatically deleted
** when the VDBE cursor to the table is closed.  In this case Table.tnum 
** refers VDBE cursor number that holds the table open, not to the root
** page number.  Transient tables are used to hold the results of a
** sub-query that appears instead of a real table name in the FROM clause 
** of a SELECT statement.
*/
struct Table {
  char *zName;     /* Name of the table */
  int nCol;        /* Number of columns in this table */
  Column *aCol;    /* Information about each column */
  int iPKey;       /* If not less then 0, use aCol[iPKey] as the primary key */
  Index *pIndex;   /* List of SQL indexes on this table. */
  int tnum;        /* Root BTree node for this table (see note above) */
  Select *pSelect; /* NULL for tables.  Points to definition if a view. */
  int nRef;          /* Number of pointers to this Table */
  Trigger *pTrigger; /* List of SQL triggers on this table */
  FKey *pFKey;       /* Linked list of all foreign keys in this table */
  char *zColAff;     /* String defining the affinity of each column */
#ifndef SQLITE_OMIT_CHECK
  Expr *pCheck;      /* The AND of all CHECK constraints */
#endif
#ifndef SQLITE_OMIT_ALTERTABLE
  int addColOffset;  /* Offset in CREATE TABLE statement to add a new column */
#endif
  u8 readOnly;     /* True if this table should not be written by the user */
  u8 isEphem;      /* True if created using OP_OpenEphermeral */
  u8 hasPrimKey;   /* True if there exists a primary key */
  u8 keyConf;      /* What to do in case of uniqueness conflict on iPKey */
  u8 autoInc;      /* True if the integer primary key is autoincrement */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  u8 isVirtual;             /* True if this is a virtual table */
  u8 isCommit;              /* True once the CREATE TABLE has been committed */
  Module *pMod;             /* Pointer to the implementation of the module */
  sqlite3_vtab *pVtab;      /* Pointer to the module instance */
  int nModuleArg;           /* Number of arguments to the module */
  char **azModuleArg;       /* Text of all module args. [0] is module name */
#endif
  Schema *pSchema;
};

/*
** Test to see whether or not a table is a virtual table.  This is
** done as a macro so that it will be optimized out when virtual
** table support is omitted from the build.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
#  define IsVirtual(X) ((X)->isVirtual)
#else
#  define IsVirtual(X) 0
#endif

/*
** Each foreign key constraint is an instance of the following structure.
**
** A foreign key is associated with two tables.  The "from" table is
** the table that contains the REFERENCES clause that creates the foreign
** key.  The "to" table is the table that is named in the REFERENCES clause.
** Consider this example:
**
**     CREATE TABLE ex1(
**       a INTEGER PRIMARY KEY,
**       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
**     );
**
** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
**
** Each REFERENCES clause generates an instance of the following structure
** which is attached to the from-table.  The to-table need not exist when
** the from-table is created.  The existance of the to-table is not checked
** until an attempt is made to insert data into the from-table.
**
** The sqlite.aFKey hash table stores pointers to this structure
** given the name of a to-table.  For each to-table, all foreign keys
** associated with that table are on a linked list using the FKey.pNextTo
** field.
*/
struct FKey {
  Table *pFrom;     /* The table that constains the REFERENCES clause */
  FKey *pNextFrom;  /* Next foreign key in pFrom */
  char *zTo;        /* Name of table that the key points to */
  FKey *pNextTo;    /* Next foreign key that points to zTo */
  int nCol;         /* Number of columns in this key */
  struct sColMap {  /* Mapping of columns in pFrom to columns in zTo */
    int iFrom;         /* Index of column in pFrom */
    char *zCol;        /* Name of column in zTo.  If 0 use PRIMARY KEY */
  } *aCol;          /* One entry for each of nCol column s */
  u8 isDeferred;    /* True if constraint checking is deferred till COMMIT */
  u8 updateConf;    /* How to resolve conflicts that occur on UPDATE */
  u8 deleteConf;    /* How to resolve conflicts that occur on DELETE */
  u8 insertConf;    /* How to resolve conflicts that occur on INSERT */
};

/*
** SQLite supports many different ways to resolve a contraint
** error.  ROLLBACK processing means that a constraint violation
** causes the operation in process to fail and for the current transaction
** to be rolled back.  ABORT processing means the operation in process
** fails and any prior changes from that one operation are backed out,
** but the transaction is not rolled back.  FAIL processing means that
** the operation in progress stops and returns an error code.  But prior
** changes due to the same operation are not backed out and no rollback
** occurs.  IGNORE means that the particular row that caused the constraint
** error is not inserted or updated.  Processing continues and no error
** is returned.  REPLACE means that preexisting database rows that caused
** a UNIQUE constraint violation are removed so that the new insert or
** update can proceed.  Processing continues and no error is reported.
**
** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
** referenced table row is propagated into the row that holds the
** foreign key.
** 
** The following symbolic values are used to record which type
** of action to take.
*/
#define OE_None     0   /* There is no constraint to check */
#define OE_Rollback 1   /* Fail the operation and rollback the transaction */
#define OE_Abort    2   /* Back out changes but do no rollback transaction */
#define OE_Fail     3   /* Stop the operation but leave all prior changes */
#define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
#define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */

#define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
#define OE_SetNull  7   /* Set the foreign key value to NULL */
#define OE_SetDflt  8   /* Set the foreign key value to its default */
#define OE_Cascade  9   /* Cascade the changes */

#define OE_Default  99  /* Do whatever the default action is */


/*
** An instance of the following structure is passed as the first
** argument to sqlite3VdbeKeyCompare and is used to control the 
** comparison of the two index keys.
**
** If the KeyInfo.incrKey value is true and the comparison would
** otherwise be equal, then return a result as if the second key
** were larger.
*/
struct KeyInfo {
  u8 enc;             /* Text encoding - one of the TEXT_Utf* values */
  u8 incrKey;         /* Increase 2nd key by epsilon before comparison */
  int nField;         /* Number of entries in aColl[] */
  u8 *aSortOrder;     /* If defined an aSortOrder[i] is true, sort DESC */
  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
};

/*
** Each SQL index is represented in memory by an
** instance of the following structure.
**
** The columns of the table that are to be indexed are described
** by the aiColumn[] field of this structure.  For example, suppose
** we have the following table and index:
**
**     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
**     CREATE INDEX Ex2 ON Ex1(c3,c1);
**
** In the Table structure describing Ex1, nCol==3 because there are

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -