📄 vdbe.c
字号:
if( res ){
pc = pOp->p2-1;
}
}else{
pTos++;
pTos->flags = MEM_Int;
pTos->i = res;
}
break;
}
/* Opcode: And * * *
**
** Pop two values off the stack. Take the logical AND of the
** two values and push the resulting boolean value back onto the
** stack.
*/
/* Opcode: Or * * *
**
** Pop two values off the stack. Take the logical OR of the
** two values and push the resulting boolean value back onto the
** stack.
*/
case OP_And: /* same as TK_AND, no-push */
case OP_Or: { /* same as TK_OR, no-push */
Mem *pNos = &pTos[-1];
int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
assert( pNos>=p->aStack );
if( pTos->flags & MEM_Null ){
v1 = 2;
}else{
sqlite3VdbeMemIntegerify(pTos);
v1 = pTos->i==0;
}
if( pNos->flags & MEM_Null ){
v2 = 2;
}else{
sqlite3VdbeMemIntegerify(pNos);
v2 = pNos->i==0;
}
if( pOp->opcode==OP_And ){
static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
v1 = and_logic[v1*3+v2];
}else{
static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
v1 = or_logic[v1*3+v2];
}
popStack(&pTos, 2);
pTos++;
if( v1==2 ){
pTos->flags = MEM_Null;
}else{
pTos->i = v1==0;
pTos->flags = MEM_Int;
}
break;
}
/* Opcode: Negative * * *
**
** Treat the top of the stack as a numeric quantity. Replace it
** with its additive inverse. If the top of the stack is NULL
** its value is unchanged.
*/
/* Opcode: AbsValue * * *
**
** Treat the top of the stack as a numeric quantity. Replace it
** with its absolute value. If the top of the stack is NULL
** its value is unchanged.
*/
case OP_Negative: /* same as TK_UMINUS, no-push */
case OP_AbsValue: {
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Real ){
neg_abs_real_case:
Release(pTos);
if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
pTos->r = -pTos->r;
}
pTos->flags = MEM_Real;
}else if( pTos->flags & MEM_Int ){
Release(pTos);
if( pOp->opcode==OP_Negative || pTos->i<0 ){
pTos->i = -pTos->i;
}
pTos->flags = MEM_Int;
}else if( pTos->flags & MEM_Null ){
/* Do nothing */
}else{
sqlite3VdbeMemNumerify(pTos);
goto neg_abs_real_case;
}
break;
}
/* Opcode: Not * * *
**
** Interpret the top of the stack as a boolean value. Replace it
** with its complement. If the top of the stack is NULL its value
** is unchanged.
*/
case OP_Not: { /* same as TK_NOT, no-push */
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
sqlite3VdbeMemIntegerify(pTos);
assert( (pTos->flags & MEM_Dyn)==0 );
pTos->i = !pTos->i;
pTos->flags = MEM_Int;
break;
}
/* Opcode: BitNot * * *
**
** Interpret the top of the stack as an value. Replace it
** with its ones-complement. If the top of the stack is NULL its
** value is unchanged.
*/
case OP_BitNot: { /* same as TK_BITNOT, no-push */
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
sqlite3VdbeMemIntegerify(pTos);
assert( (pTos->flags & MEM_Dyn)==0 );
pTos->i = ~pTos->i;
pTos->flags = MEM_Int;
break;
}
/* Opcode: Noop * * *
**
** Do nothing. This instruction is often useful as a jump
** destination.
*/
/*
** The magic Explain opcode are only inserted when explain==2 (which
** is to say when the EXPLAIN QUERY PLAN syntax is used.)
** This opcode records information from the optimizer. It is the
** the same as a no-op. This opcodesnever appears in a real VM program.
*/
case OP_Explain:
case OP_Noop: { /* no-push */
break;
}
/* Opcode: If P1 P2 *
**
** Pop a single boolean from the stack. If the boolean popped is
** true, then jump to p2. Otherwise continue to the next instruction.
** An integer is false if zero and true otherwise. A string is
** false if it has zero length and true otherwise.
**
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
/* Opcode: IfNot P1 P2 *
**
** Pop a single boolean from the stack. If the boolean popped is
** false, then jump to p2. Otherwise continue to the next instruction.
** An integer is false if zero and true otherwise. A string is
** false if it has zero length and true otherwise.
**
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
case OP_If: /* no-push */
case OP_IfNot: { /* no-push */
int c;
assert( pTos>=p->aStack );
if( pTos->flags & MEM_Null ){
c = pOp->p1;
}else{
#ifdef SQLITE_OMIT_FLOATING_POINT
c = sqlite3VdbeIntValue(pTos);
#else
c = sqlite3VdbeRealValue(pTos)!=0.0;
#endif
if( pOp->opcode==OP_IfNot ) c = !c;
}
Release(pTos);
pTos--;
if( c ) pc = pOp->p2-1;
break;
}
/* Opcode: IsNull P1 P2 *
**
** If any of the top abs(P1) values on the stack are NULL, then jump
** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack
** unchanged.
*/
case OP_IsNull: { /* same as TK_ISNULL, no-push */
int i, cnt;
Mem *pTerm;
cnt = pOp->p1;
if( cnt<0 ) cnt = -cnt;
pTerm = &pTos[1-cnt];
assert( pTerm>=p->aStack );
for(i=0; i<cnt; i++, pTerm++){
if( pTerm->flags & MEM_Null ){
pc = pOp->p2-1;
break;
}
}
if( pOp->p1>0 ) popStack(&pTos, cnt);
break;
}
/* Opcode: NotNull P1 P2 *
**
** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the
** stack if P1 times if P1 is greater than zero. If P1 is less than
** zero then leave the stack unchanged.
*/
case OP_NotNull: { /* same as TK_NOTNULL, no-push */
int i, cnt;
cnt = pOp->p1;
if( cnt<0 ) cnt = -cnt;
assert( &pTos[1-cnt] >= p->aStack );
for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
if( i>=cnt ) pc = pOp->p2-1;
if( pOp->p1>0 ) popStack(&pTos, cnt);
break;
}
/* Opcode: SetNumColumns P1 P2 *
**
** Before the OP_Column opcode can be executed on a cursor, this
** opcode must be called to set the number of fields in the table.
**
** This opcode sets the number of columns for cursor P1 to P2.
**
** If OP_KeyAsData is to be applied to cursor P1, it must be executed
** before this op-code.
*/
case OP_SetNumColumns: { /* no-push */
Cursor *pC;
assert( (pOp->p1)<p->nCursor );
assert( p->apCsr[pOp->p1]!=0 );
pC = p->apCsr[pOp->p1];
pC->nField = pOp->p2;
break;
}
/* Opcode: Column P1 P2 P3
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction. (See the MakeRecord opcode for additional
** information about the format of the data.) Push onto the stack the value
** of the P2-th column contained in the data. If there are less that (P2+1)
** values in the record, push a NULL onto the stack.
**
** If the KeyAsData opcode has previously executed on this cursor, then the
** field might be extracted from the key rather than the data.
**
** If the column contains fewer than P2 fields, then push a NULL. Or
** if P3 is of type P3_MEM, then push the P3 value. The P3 value will
** be default value for a column that has been added using the ALTER TABLE
** ADD COLUMN command. If P3 is an ordinary string, just push a NULL.
** When P3 is a string it is really just a comment describing the value
** to be pushed, not a default value.
*/
case OP_Column: {
u32 payloadSize; /* Number of bytes in the record */
int p1 = pOp->p1; /* P1 value of the opcode */
int p2 = pOp->p2; /* column number to retrieve */
Cursor *pC = 0; /* The VDBE cursor */
char *zRec; /* Pointer to complete record-data */
BtCursor *pCrsr; /* The BTree cursor */
u32 *aType; /* aType[i] holds the numeric type of the i-th column */
u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
u32 nField; /* number of fields in the record */
int len; /* The length of the serialized data for the column */
int i; /* Loop counter */
char *zData; /* Part of the record being decoded */
Mem sMem; /* For storing the record being decoded */
sMem.flags = 0;
assert( p1<p->nCursor );
pTos++;
pTos->flags = MEM_Null;
/* This block sets the variable payloadSize to be the total number of
** bytes in the record.
**
** zRec is set to be the complete text of the record if it is available.
** The complete record text is always available for pseudo-tables
** If the record is stored in a cursor, the complete record text
** might be available in the pC->aRow cache. Or it might not be.
** If the data is unavailable, zRec is set to NULL.
**
** We also compute the number of columns in the record. For cursors,
** the number of columns is stored in the Cursor.nField element. For
** records on the stack, the next entry down on the stack is an integer
** which is the number of records.
*/
pC = p->apCsr[p1];
assert( pC!=0 );
if( pC->pCursor!=0 ){
/* The record is stored in a B-Tree */
rc = sqlite3VdbeCursorMoveto(pC);
if( rc ) goto abort_due_to_error;
zRec = 0;
pCrsr = pC->pCursor;
if( pC->nullRow ){
payloadSize = 0;
}else if( pC->cacheStatus==p->cacheCtr ){
payloadSize = pC->payloadSize;
zRec = (char*)pC->aRow;
}else if( pC->isIndex ){
i64 payloadSize64;
sqlite3BtreeKeySize(pCrsr, &payloadSize64);
payloadSize = payloadSize64;
}else{
sqlite3BtreeDataSize(pCrsr, &payloadSize);
}
nField = pC->nField;
}else if( pC->pseudoTable ){
/* The record is the sole entry of a pseudo-table */
payloadSize = pC->nData;
zRec = pC->pData;
pC->cacheStatus = CACHE_STALE;
assert( payloadSize==0 || zRec!=0 );
nField = pC->nField;
pCrsr = 0;
}else{
zRec = 0;
payloadSize = 0;
pCrsr = 0;
nField = 0;
}
/* If payloadSize is 0, then just push a NULL onto the stack. */
if( payloadSize==0 ){
assert( pTos->flags==MEM_Null );
break;
}
assert( p2<nField );
/* Read and parse the table header. Store the results of the parse
** into the record header cache fields of the cursor.
*/
if( pC && pC->cacheStatus==p->cacheCtr ){
aType = pC->aType;
aOffset = pC->aOffset;
}else{
u8 *zIdx; /* Index into header */
u8 *zEndHdr; /* Pointer to first byte after the header */
u32 offset; /* Offset into the data */
int szHdrSz; /* Size of the header size field at start of record */
int avail; /* Number of bytes of available data */
aType = pC->aType;
if( aType==0 ){
pC->aType = aType = sqliteMallocRaw( 2*nField*sizeof(aType) );
}
if( aType==0 ){
goto no_mem;
}
pC->aOffset = aOffset = &aType[nField];
pC->payloadSize = payloadSize;
pC->cacheStatus = p->cacheCtr;
/* Figure out how many bytes are in the header */
if( zRec ){
zData = zRec;
}else{
if( pC->isIndex ){
zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
}else{
zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
}
/* If KeyFetch()/DataFetch() managed to get the entire payload,
** save the payload in the pC->aRow cache. That will save us from
** having to make additional calls to fetch the content portion of
** the record.
*/
if( avail>=payloadSize ){
zRec = zData;
pC->aRow = (u8*)zData;
}else{
pC->aRow = 0;
}
}
assert( zRec!=0 || avail>=payloadSize || avail>=9 );
szHdrSz = GetVarint((u8*)zData, offset);
/* The KeyFetch() or DataFetch() above are fast and will get the entire
** record header in most cases. But they will fail to get the complete
** record header if the record header does not fit on a single page
** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
** acquire the complete header text.
*/
if( !zRec && avail<offset ){
rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
if( rc!=SQLITE_OK ){
goto op_column_out;
}
zData = sMem.z;
}
zEndHdr = (u8 *)&zData[offset];
zIdx = (u8 *)&zData[szHdrSz];
/* Scan the header and use it to fill in the aType[] and aOffset[]
** arrays. aType[i] will contain the type integer for the i-th
** column and aOffset[i] will contain the offset from the beginning
** of the record to the start of the data for the i-th colu
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -