⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vdbeaux.c

📁 sqlite 3.3.8 支持加密的版本
💻 C
📖 第 1 页 / 共 5 页
字号:
**      5                     6            signed integer
**      6                     8            signed integer
**      7                     8            IEEE float
**      8                     0            Integer constant 0
**      9                     0            Integer constant 1
**     10,11                               reserved for expansion
**    N>=12 and even       (N-12)/2        BLOB
**    N>=13 and odd        (N-13)/2        text
**
** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
** of SQLite will not understand those serial types.
*/

/*
** Return the serial-type for the value stored in pMem.
*/
u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
  int flags = pMem->flags;

  if( flags&MEM_Null ){
    return 0;
  }
  if( flags&MEM_Int ){
    /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
#   define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
    i64 i = pMem->i;
    u64 u;
    if( file_format>=4 && (i&1)==i ){
      return 8+i;
    }
    u = i<0 ? -i : i;
    if( u<=127 ) return 1;
    if( u<=32767 ) return 2;
    if( u<=8388607 ) return 3;
    if( u<=2147483647 ) return 4;
    if( u<=MAX_6BYTE ) return 5;
    return 6;
  }
  if( flags&MEM_Real ){
    return 7;
  }
  if( flags&MEM_Str ){
    int n = pMem->n;
    assert( n>=0 );
    return ((n*2) + 13);
  }
  if( flags&MEM_Blob ){
    return (pMem->n*2 + 12);
  }
  return 0;
}

/*
** Return the length of the data corresponding to the supplied serial-type.
*/
int sqlite3VdbeSerialTypeLen(u32 serial_type){
  if( serial_type>=12 ){
    return (serial_type-12)/2;
  }else{
    static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
    return aSize[serial_type];
  }
}

/*
** Write the serialized data blob for the value stored in pMem into 
** buf. It is assumed that the caller has allocated sufficient space.
** Return the number of bytes written.
*/ 
int sqlite3VdbeSerialPut(unsigned char *buf, Mem *pMem, int file_format){
  u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
  int len;

  /* Integer and Real */
  if( serial_type<=7 && serial_type>0 ){
    u64 v;
    int i;
    if( serial_type==7 ){
      v = *(u64*)&pMem->r;
    }else{
      v = *(u64*)&pMem->i;
    }
    len = i = sqlite3VdbeSerialTypeLen(serial_type);
    while( i-- ){
      buf[i] = (v&0xFF);
      v >>= 8;
    }
    return len;
  }

  /* String or blob */
  if( serial_type>=12 ){
    len = sqlite3VdbeSerialTypeLen(serial_type);
    memcpy(buf, pMem->z, len);
    return len;
  }

  /* NULL or constants 0 or 1 */
  return 0;
}

/*
** Deserialize the data blob pointed to by buf as serial type serial_type
** and store the result in pMem.  Return the number of bytes read.
*/ 
int sqlite3VdbeSerialGet(
  const unsigned char *buf,     /* Buffer to deserialize from */
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
){
  switch( serial_type ){
    case 10:   /* Reserved for future use */
    case 11:   /* Reserved for future use */
    case 0: {  /* NULL */
      pMem->flags = MEM_Null;
      break;
    }
    case 1: { /* 1-byte signed integer */
      pMem->i = (signed char)buf[0];
      pMem->flags = MEM_Int;
      return 1;
    }
    case 2: { /* 2-byte signed integer */
      pMem->i = (((signed char)buf[0])<<8) | buf[1];
      pMem->flags = MEM_Int;
      return 2;
    }
    case 3: { /* 3-byte signed integer */
      pMem->i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
      pMem->flags = MEM_Int;
      return 3;
    }
    case 4: { /* 4-byte signed integer */
      pMem->i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
      pMem->flags = MEM_Int;
      return 4;
    }
    case 5: { /* 6-byte signed integer */
      u64 x = (((signed char)buf[0])<<8) | buf[1];
      u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
      x = (x<<32) | y;
      pMem->i = *(i64*)&x;
      pMem->flags = MEM_Int;
      return 6;
    }
    case 6:   /* 8-byte signed integer */
    case 7: { /* IEEE floating point */
      u64 x;
      u32 y;
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
      /* Verify that integers and floating point values use the same
      ** byte order.  The byte order differs on some (broken) architectures.
      */
      static const u64 t1 = ((u64)0x3ff00000)<<32;
      assert( 1.0==*(double*)&t1 );
#endif

      x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
      y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
      x = (x<<32) | y;
      if( serial_type==6 ){
        pMem->i = *(i64*)&x;
        pMem->flags = MEM_Int;
      }else{
        pMem->r = *(double*)&x;
        pMem->flags = MEM_Real;
      }
      return 8;
    }
    case 8:    /* Integer 0 */
    case 9: {  /* Integer 1 */
      pMem->i = serial_type-8;
      pMem->flags = MEM_Int;
      return 0;
    }
    default: {
      int len = (serial_type-12)/2;
      pMem->z = (char *)buf;
      pMem->n = len;
      pMem->xDel = 0;
      if( serial_type&0x01 ){
        pMem->flags = MEM_Str | MEM_Ephem;
      }else{
        pMem->flags = MEM_Blob | MEM_Ephem;
      }
      return len;
    }
  }
  return 0;
}

/*
** The header of a record consists of a sequence variable-length integers.
** These integers are almost always small and are encoded as a single byte.
** The following macro takes advantage this fact to provide a fast decode
** of the integers in a record header.  It is faster for the common case
** where the integer is a single byte.  It is a little slower when the
** integer is two or more bytes.  But overall it is faster.
**
** The following expressions are equivalent:
**
**     x = sqlite3GetVarint32( A, &B );
**
**     x = GetVarint( A, B );
**
*/
#define GetVarint(A,B)  ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))

/*
** This function compares the two table rows or index records specified by 
** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero
** or positive integer if {nKey1, pKey1} is less than, equal to or 
** greater than {nKey2, pKey2}.  Both Key1 and Key2 must be byte strings
** composed by the OP_MakeRecord opcode of the VDBE.
*/
int sqlite3VdbeRecordCompare(
  void *userData,
  int nKey1, const void *pKey1, 
  int nKey2, const void *pKey2
){
  KeyInfo *pKeyInfo = (KeyInfo*)userData;
  u32 d1, d2;          /* Offset into aKey[] of next data element */
  u32 idx1, idx2;      /* Offset into aKey[] of next header element */
  u32 szHdr1, szHdr2;  /* Number of bytes in header */
  int i = 0;
  int nField;
  int rc = 0;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  const unsigned char *aKey2 = (const unsigned char *)pKey2;

  Mem mem1;
  Mem mem2;
  mem1.enc = pKeyInfo->enc;
  mem2.enc = pKeyInfo->enc;
  
  idx1 = GetVarint(aKey1, szHdr1);
  d1 = szHdr1;
  idx2 = GetVarint(aKey2, szHdr2);
  d2 = szHdr2;
  nField = pKeyInfo->nField;
  while( idx1<szHdr1 && idx2<szHdr2 ){
    u32 serial_type1;
    u32 serial_type2;

    /* Read the serial types for the next element in each key. */
    idx1 += GetVarint( aKey1+idx1, serial_type1 );
    if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
    idx2 += GetVarint( aKey2+idx2, serial_type2 );
    if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break;

    /* Assert that there is enough space left in each key for the blob of
    ** data to go with the serial type just read. This assert may fail if
    ** the file is corrupted.  Then read the value from each key into mem1
    ** and mem2 respectively.
    */
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
    d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2);

    rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0);
    if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1);
    if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2);
    if( rc!=0 ){
      break;
    }
    i++;
  }

  /* One of the keys ran out of fields, but all the fields up to that point
  ** were equal. If the incrKey flag is true, then the second key is
  ** treated as larger.
  */
  if( rc==0 ){
    if( pKeyInfo->incrKey ){
      rc = -1;
    }else if( d1<nKey1 ){
      rc = 1;
    }else if( d2<nKey2 ){
      rc = -1;
    }
  }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
               && pKeyInfo->aSortOrder[i] ){
    rc = -rc;
  }

  return rc;
}

/*
** The argument is an index entry composed using the OP_MakeRecord opcode.
** The last entry in this record should be an integer (specifically
** an integer rowid).  This routine returns the number of bytes in
** that integer.
*/
int sqlite3VdbeIdxRowidLen(const u8 *aKey){
  u32 szHdr;        /* Size of the header */
  u32 typeRowid;    /* Serial type of the rowid */

  sqlite3GetVarint32(aKey, &szHdr);
  sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
  return sqlite3VdbeSerialTypeLen(typeRowid);
}
  

/*
** pCur points at an index entry created using the OP_MakeRecord opcode.
** Read the rowid (the last field in the record) and store it in *rowid.
** Return SQLITE_OK if everything works, or an error code otherwise.
*/
int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
  i64 nCellKey;
  int rc;
  u32 szHdr;        /* Size of the header */
  u32 typeRowid;    /* Serial type of the rowid */
  u32 lenRowid;     /* Size of the rowid */
  Mem m, v;

  sqlite3BtreeKeySize(pCur, &nCellKey);
  if( nCellKey<=0 ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  sqlite3GetVarint32((u8*)m.z, &szHdr);
  sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
  lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
  sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
  *rowid = v.i;
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}

/*
** Compare the key of the index entry that cursor pC is point to against
** the key string in pKey (of length nKey).  Write into *pRes a number
** that is negative, zero, or positive if pC is less than, equal to,
** or greater than pKey.  Return SQLITE_OK on success.
**
** pKey is either created without a rowid or is truncated so that it
** omits the rowid at the end.  The rowid at the end of the index entry
** is ignored as well.
*/
int sqlite3VdbeIdxKeyCompare(
  Cursor *pC,                 /* The cursor to compare against */
  int nKey, const u8 *pKey,   /* The key to compare */
  int *res                    /* Write the comparison result here */
){
  i64 nCellKey;
  int rc;
  BtCursor *pCur = pC->pCursor;
  int lenRowid;
  Mem m;

  sqlite3BtreeKeySize(pCur, &nCellKey);
  if( nCellKey<=0 ){
    *res = 0;
    return SQLITE_OK;
  }
  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
  *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}

/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'. 
*/
void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
  db->nChange = nChange;
  db->nTotalChange += nChange;
}

/*
** Set a flag in the vdbe to update the change counter when it is finalised
** or reset.
*/
void sqlite3VdbeCountChanges(Vdbe *v){
  v->changeCntOn = 1;
}

/*
** Mark every prepared statement associated with a database connection
** as expired.
**
** An expired statement means that recompilation of the statement is
** recommend.  Statements expire when things happen that make their
** programs obsolete.  Removing user-defined functions or collating
** sequences, or changing an authorization function are the types of
** things that make prepared statements obsolete.
*/
void sqlite3ExpirePreparedStatements(sqlite3 *db){
  Vdbe *p;
  for(p = db->pVdbe; p; p=p->pNext){
    p->expired = 1;
  }
}

/*
** Return the database associated with the Vdbe.
*/
sqlite3 *sqlite3VdbeDb(Vdbe *v){
  return v->db;
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -