⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 us_anasp.c

📁 光学设计软件zemax源码: This DLL models an nular aspheric surface as described in: "Annular surfaces in
💻 C
字号:
#include <windows.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include "usersurf.h"

/*
Written by Kenneth E. Moore
January 27, 1998
*/

int __declspec(dllexport) APIENTRY UserDefinedSurface(USER_DATA *UD, FIXED_DATA *FD);

/* a generic Snells law refraction routine */
int Refract(double thisn, double nextn, double *l, double *m, double *n, double ln, double mn, double nn);

BOOL WINAPI DllMain (HANDLE hInst, ULONG ul_reason_for_call, LPVOID lpReserved)
	{
   return TRUE;
   }

/*

This DLL models an annular aspheric surface as described in:

"Annular surfaces in annular field systems"
By Jose M. Sasian
Opt. eng. 36 (12) P 3401-3401 December 1997

This surface is essentially an odd aspheric surface with an offset in the aspheric terms.
The sag is given by:

Z = (c*r*r) / (1+(1-((1+k)*c*c*r*r))^ 1/2 ) + a*(r-q)^2 + b*(r-q)^3 + c*(r-q)^4 + ...

Note the terms a, b, c, ... have units of length to the -1, -2, -3, ... power.

*/

int __declspec(dllexport) APIENTRY UserDefinedSurface(USER_DATA *UD, FIXED_DATA *FD)
	{
   int i, loop, pmax;
   double q, dr, r, r2, tp, alpha, power, rad, t, x, y, z, dz, sag, mm;

   switch(FD->type)
   	{
      case 0:
      	/* ZEMAX is requesting general information about the surface */
         switch(FD->numb)
         	{
            case 0:
            	/* ZEMAX wants to know the name of the surface */
		         /* do not exceed 12 characters */
		         strcpy(UD->string,"AnnularAsph");
               break;
            case 1:
            	/* ZEMAX wants to know if this surface is rotationally symmetric */
               /* it is, so return any character in the string; otherwise, return a null string */
            	strcpy(UD->string, "1");
               break;
            case 2:
            	/* ZEMAX wants to know if this surface is a gradient index media */
               /* it is not, so return a null string */
            	UD->string[0] = '\0';
            	break;
            }
         break;
      case 1:
      	/* ZEMAX is requesting the names of the parameter columns */
         /* the value FD->numb will indicate which value ZEMAX wants. */
         /* Only "q" in parameter 1 is used for this surface type */
         /* returning a null string indicates that the parameter is unused. */
         switch(FD->numb)
         	{
            case 1:
            	strcpy(UD->string, "q");
               break;
            default:
            	UD->string[0] = '\0';
            	break;
            }
      	break;
      case 2:
      	/* ZEMAX is requesting the names of the extra data columns */
         /* the value FD->numb will indicate which value ZEMAX wants. */
         /* returning a null string indicates that the extradata value is unused. */
         switch(FD->numb)
         	{
            case 1:
            	strcpy(UD->string, "# Terms");
               break;
            default:
            	if (FD->numb <= FD->xdata[1] + 1)
               	{
                  sprintf(UD->string, "Term %i", FD->numb - 1);
                  }
               else
               	{
	            	UD->string[0] = '\0';
                  }
            	break;
            }
      	break;
      case 3:
      	/* ZEMAX wants to know the sag of the surface */

         UD->sag1 = 0.0;
         UD->sag2 = 0.0;
         q = FD->param[1];

         r2 = UD->x * UD->x + UD->y * UD->y;
         r = sqrt(r2);

         alpha = 1 - (1+FD->k)*FD->cv*FD->cv*r2;
         if (alpha < 0) return(-1);

         /* now the aspheric terms */
         pmax = FD->xdata[1];
         dr = r - q;
			UD->sag1 = FD->xdata[pmax+1];
         for (i = pmax - 1; i >= 1; i--)
         	{
            UD->sag1 = UD->sag1*dr + FD->xdata[i+1];
            }
         UD->sag1 = UD->sag1*dr*dr + (FD->cv*r2)/(1 + sqrt(alpha));
         UD->sag2 = UD->sag1;

      	break;
      case 4:
      	/* ZEMAX wants a paraxial ray trace to this surface */
         /* x, y, z, and the optical path are unaffected, at least for this surface type */
         /* for paraxial ray tracing, the return z coordinate should always be zero. */
         /* paraxial surfaces are always planes with the following normals */
         /* we will ignore the aspheric terms, even the quadratic one, since it has a */
         /* meaning that is hard to interpret if q != 0.0 */

         UD->ln =  0.0;
         UD->mn =  0.0;
         UD->nn = -1.0;
         power = (FD->n2 - FD->n1)*FD->cv;
         if ((UD->n) != 0.0)
         	{
            (UD->l) = (UD->l)/(UD->n);
            (UD->m) = (UD->m)/(UD->n);

            (UD->l) = (FD->n1*(UD->l) - (UD->x)*power)/(FD->n2);
            (UD->m) = (FD->n1*(UD->m) - (UD->y)*power)/(FD->n2);

            /* normalize */
            (UD->n) = sqrt(1/(1 + (UD->l)*(UD->l) + (UD->m)*(UD->m) ) );
            /* de-paraxialize */
            (UD->l) = (UD->l)*(UD->n);
            (UD->m) = (UD->m)*(UD->n);
            }
         break;
      case 5:
      	/* ZEMAX wants a real ray trace to this surface */
         /* okay, not a plane. */
         /* do not allow n == 0 */
         if (UD->n == 0.0) return -1;

         /* Now, we illustrate an iterative method of finding
            the intercept for a general surface. */

			/* make sure we do at least 1 loop */

			t = 100.0;
         tp = 0.0;
         x = UD->x;
         y = UD->y;
         z = UD->z;
         loop = 0;
         q = FD->param[1];
         pmax = FD->xdata[1];

         while (fabs(t) > 1e-10)
         	{
				/*
            First, compute the sag using whatever the surface sag expression is.
            This is given the x and y starting points. The following block of code
            will change depending upon the surface shape, the rest of this iteration
            is typically common to all surface shapes.
            */

	         r2 = x * x + y * y;
            r = sqrt(r2);

	         alpha = 1.0 - (1.0 + FD->k)*FD->cv*FD->cv*r2;
	         if (alpha < 0.0) return(-1);

	         /* now the aspheric terms */
	         dr = r - q;
				sag = FD->xdata[pmax+1];
	         for (i = pmax - 1; i >= 1; i--)
   	      	{
      	      sag = sag*dr + FD->xdata[i+1];
         	   }
         	sag = sag*dr*dr + (FD->cv*r2)/(1.0 + sqrt(alpha));

            /* okay, now with sag in hand, how far are we away in z? */
            dz = sag - z;

            /* now compute how far along the z axis this is */
            /* note this will crash if n == 0!! */
            t = dz / (UD->n);

            /* propagate the additional "t" distance */
            x += UD->l*t;
            y += UD->m*t;
            z += UD->n*t;

            /* add in the optical path */
				tp += t;

            /* prevent infinte loop if no convergence */
            loop++;
            if (loop > 1000) return(-1);
            }

         /* okay, we should be a the intercept coordinates now */
         UD->x = x;
         UD->y = y;
         UD->z = z;

      	/* don't forget the path! */
			UD->path = tp;

         r2 = x * x + y * y;
         r = sqrt(r2);
         dr = r - q;

			/* now do the normals */
         if (r==0)
         	{
            UD->ln =  0;
            UD->mn =  0;
            UD->nn = -1;
            }
         else
         	{
            alpha = 1.0 - (1.0+FD->k)*FD->cv*FD->cv*r2;
            if (alpha < 0) return(-1); /* ray misses */
            alpha = sqrt(alpha);

            if (pmax)
            	{
               mm = FD->xdata[pmax+1]*(pmax+1);
               for (i = pmax-1; i >= 1; i--)
               	{
                  mm = mm*dr + (i+1)*FD->xdata[i+1];
                  }
               mm = mm*dr;
               }
            else mm = 0.0;

            mm += (FD->cv*r/(1.0+alpha))*(2.0 + (FD->cv*FD->cv*r2*(1.0+FD->k))/(alpha*(1.0+alpha)));
            rad = 1.0 + (mm*mm);
            rad = mm / sqrt(rad);
            UD->ln = (x/r)*rad;
            UD->mn = (y/r)*rad;
            UD->nn = UD->ln*UD->ln + UD->mn*UD->mn;
            if (UD->nn >= 1.0) return(-1);
            else UD->nn = -sqrt(1.0 - UD->nn);
            }
         if (Refract(FD->n1, FD->n2, &UD->l, &UD->m, &UD->n, UD->ln, UD->mn, UD->nn)) return(-FD->surf);
         break;
      case 6:
      	/* ZEMAX wants the index, dn/dx, dn/dy, and dn/dz at the given x, y, z. */

         /* This is only required for gradient index surfaces, so return dummy values */
         UD->index = FD->n2;
         UD->dndx = 0.0;
         UD->dndy = 0.0;
         UD->dndz = 0.0;
      	break;
      case 7:
      	/* ZEMAX wants the "safe" data. */
         /* this is used by ZEMAX to set the initial values for all parameters and extra data */
         /* when the user first changes to this surface type. */
         /* this is the only time the DLL should modify the data in the FIXED_DATA FD structure */
         for (i = 1; i <= 8; i++) FD->param[i] = 0.0;
         for (i = 1; i <= 200; i++) FD->xdata[i] = 0.0;
         break;
      }
   return 0;
   }

int Refract(double thisn, double nextn, double *l, double *m, double *n, double ln, double mn, double nn)
{
double nr, cosi, cosi2, rad, cosr, gamma;
if (thisn != nextn)
	{
	nr = thisn / nextn;
	cosi = fabs((*l) * ln + (*m) * mn + (*n) * nn);
	cosi2 = cosi * cosi;
	if (cosi2 > 1) cosi2 = 1;
	rad = 1 - ((1 - cosi2) * (nr * nr));
	if (rad < 0) return(-1);
	cosr = sqrt(rad);
	gamma = nr * cosi - cosr;
	(*l) = (nr * (*l)) + (gamma * ln);
	(*m) = (nr * (*m)) + (gamma * mn);
	(*n) = (nr * (*n)) + (gamma * nn);
	}
return 0;
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -