📄 qrdecomposition.cs
字号:
// ----------------------------------------------
// Lutz Roeder's Mapack for .NET, September 2000
// Adapted from Mapack for COM and Jama routines.
// http://www.aisto.com/roeder/dotnet
// ----------------------------------------------
namespace Mapack
{
using System;
/// <summary>
/// QR decomposition for a rectangular matrix.
/// </summary>
/// <remarks>
/// For an m-by-n matrix <c>A</c> with <c>m >= n</c>, the QR decomposition is an m-by-n
/// orthogonal matrix <c>Q</c> and an n-by-n upper triangular
/// matrix <c>R</c> so that <c>A = Q * R</c>.
/// The QR decompostion always exists, even if the matrix does not have
/// full rank, so the constructor will never fail. The primary use of the
/// QR decomposition is in the least squares solution of nonsquare systems
/// of simultaneous linear equations.
/// This will fail if <see cref="FullRank"/> returns <see langword="false"/>.
/// </remarks>
public class QrDecomposition
{
private Matrix QR;
private double[] Rdiag;
/// <summary>Construct a QR decomposition.</summary>
public QrDecomposition(Matrix value)
{
if (value == null)
{
throw new ArgumentNullException("value");
}
this.QR = (Matrix) value.Clone();
double[][] qr = this.QR.Array;
int m = value.Rows;
int n = value.Columns;
this.Rdiag = new double[n];
for (int k = 0; k < n; k++)
{
// Compute 2-norm of k-th column without under/overflow.
double nrm = 0;
for (int i = k; i < m; i++)
{
nrm = Hypotenuse(nrm,qr[i][k]);
}
if (nrm != 0.0)
{
// Form k-th Householder vector.
if (qr[k][k] < 0)
{
nrm = -nrm;
}
for (int i = k; i < m; i++)
{
qr[i][k] /= nrm;
}
qr[k][k] += 1.0;
// Apply transformation to remaining columns.
for (int j = k+1; j < n; j++)
{
double s = 0.0;
for (int i = k; i < m; i++)
{
s += qr[i][k]*qr[i][j];
}
s = -s/qr[k][k];
for (int i = k; i < m; i++)
{
qr[i][j] += s*qr[i][k];
}
}
}
this.Rdiag[k] = -nrm;
}
}
/// <summary>Least squares solution of <c>A * X = B</c></summary>
/// <param name="value">Right-hand-side matrix with as many rows as <c>A</c> and any number of columns.</param>
/// <returns>A matrix that minimized the two norm of <c>Q * R * X - B</c>.</returns>
/// <exception cref="T:System.ArgumentException">Matrix row dimensions must be the same.</exception>
/// <exception cref="T:System.InvalidOperationException">Matrix is rank deficient.</exception>
public Matrix Solve(Matrix value)
{
if (value == null)
{
throw new ArgumentNullException("value");
}
if (value.Rows != QR.Rows)
{
throw new ArgumentException("Matrix row dimensions must agree.");
}
if (!this.FullRank)
{
throw new InvalidOperationException("Matrix is rank deficient.");
}
// Copy right hand side
int count = value.Columns;
Matrix X = value.Clone();
int m = QR.Rows;
int n = QR.Columns;
double[][] qr = QR.Array;
// Compute Y = transpose(Q)*B
for (int k = 0; k < n; k++)
{
for (int j = 0; j < count; j++)
{
double s = 0.0;
for (int i = k; i < m; i++)
{
s += qr[i][k] * X[i,j];
}
s = -s / qr[k][k];
for (int i = k; i < m; i++)
{
X[i,j] += s * qr[i][k];
}
}
}
// Solve R*X = Y;
for (int k = n-1; k >= 0; k--)
{
for (int j = 0; j < count; j++)
{
X[k,j] /= Rdiag[k];
}
for (int i = 0; i < k; i++)
{
for (int j = 0; j < count; j++)
{
X[i,j] -= X[k,j] * qr[i][k];
}
}
}
return X.Submatrix(0, n-1, 0, count-1);
}
/// <summary>Shows if the matrix <c>A</c> is of full rank.</summary>
/// <value>The value is <see langword="true"/> if <c>R</c>, and hence <c>A</c>, has full rank.</value>
public bool FullRank
{
get
{
int columns = this.QR.Columns;
for (int i = 0; i < columns; i++)
{
if (this.Rdiag[i] == 0)
{
return false;
}
}
return true;
}
}
/// <summary>Returns the upper triangular factor <c>R</c>.</summary>
public Matrix UpperTriangularFactor
{
get
{
int n = this.QR.Columns;
Matrix X = new Matrix(n, n);
double[][] x = X.Array;
double[][] qr = QR.Array;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
if (i < j)
{
x[i][j] = qr[i][j];
}
else if (i == j)
{
x[i][j] = Rdiag[i];
}
else
{
x[i][j] = 0.0;
}
}
}
return X;
}
}
/// <summary>Returns the orthogonal factor <c>Q</c>.</summary>
public Matrix OrthogonalFactor
{
get
{
Matrix X = new Matrix(QR.Rows, QR.Columns);
double[][] x = X.Array;
double[][] qr = QR.Array;
for (int k = QR.Columns - 1; k >= 0; k--)
{
for (int i = 0; i < QR.Rows; i++)
{
x[i][k] = 0.0;
}
x[k][k] = 1.0;
for (int j = k; j < QR.Columns; j++)
{
if (qr[k][k] != 0)
{
double s = 0.0;
for (int i = k; i < QR.Rows; i++)
{
s += qr[i][k] * x[i][j];
}
s = -s / qr[k][k];
for (int i = k; i < QR.Rows; i++)
{
x[i][j] += s * qr[i][k];
}
}
}
}
return X;
}
}
private static double Hypotenuse(double a, double b)
{
if (Math.Abs(a) > Math.Abs(b))
{
double r = b / a;
return Math.Abs(a) * Math.Sqrt(1 + r * r);
}
if (b != 0)
{
double r = a / b;
return Math.Abs(b) * Math.Sqrt(1 + r * r);
}
return 0.0;
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -