⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qrdecomposition.cs

📁 C#下的矩阵计算方法,从Japack该过来的,已经试用过,很好用.
💻 CS
字号:
// ----------------------------------------------
// Lutz Roeder's Mapack for .NET, September 2000
// Adapted from Mapack for COM and Jama routines.
// http://www.aisto.com/roeder/dotnet
// ----------------------------------------------
namespace Mapack
{
	using System;

	/// <summary>
	///	  QR decomposition for a rectangular matrix.
	/// </summary>
	/// <remarks>
	///   For an m-by-n matrix <c>A</c> with <c>m &gt;= n</c>, the QR decomposition is an m-by-n
	///   orthogonal matrix <c>Q</c> and an n-by-n upper triangular 
	///   matrix <c>R</c> so that <c>A = Q * R</c>.
	///   The QR decompostion always exists, even if the matrix does not have
	///   full rank, so the constructor will never fail.  The primary use of the
	///   QR decomposition is in the least squares solution of nonsquare systems
	///   of simultaneous linear equations.
	///   This will fail if <see cref="FullRank"/> returns <see langword="false"/>.
	/// </remarks>
	public class QrDecomposition
	{
		private Matrix QR;
		private double[] Rdiag;

		/// <summary>Construct a QR decomposition.</summary>	
		public QrDecomposition(Matrix value)
		{
			if (value == null)
			{
				throw new ArgumentNullException("value");	
			}

			this.QR = (Matrix) value.Clone();
			double[][] qr = this.QR.Array;
			int m = value.Rows;
			int n = value.Columns;
			this.Rdiag = new double[n];
	
			for (int k = 0; k < n; k++) 
			{
				// Compute 2-norm of k-th column without under/overflow.
				double nrm = 0;
				for (int i = k; i < m; i++)
				{
					nrm = Hypotenuse(nrm,qr[i][k]);
				}
				 
				if (nrm != 0.0) 
				{
					// Form k-th Householder vector.
					if (qr[k][k] < 0)
					{
						nrm = -nrm;
					}
					
					for (int i = k; i < m; i++)
					{
						qr[i][k] /= nrm;
					}

					qr[k][k] += 1.0;
	
					// Apply transformation to remaining columns.
					for (int j = k+1; j < n; j++) 
					{
						double s = 0.0;

						for (int i = k; i < m; i++)
						{
							s += qr[i][k]*qr[i][j];
						}

						s = -s/qr[k][k];

						for (int i = k; i < m; i++)
						{
							qr[i][j] += s*qr[i][k];
						}
					}
				}

				this.Rdiag[k] = -nrm;
			}
		}

		/// <summary>Least squares solution of <c>A * X = B</c></summary>
		/// <param name="value">Right-hand-side matrix with as many rows as <c>A</c> and any number of columns.</param>
		/// <returns>A matrix that minimized the two norm of <c>Q * R * X - B</c>.</returns>
		/// <exception cref="T:System.ArgumentException">Matrix row dimensions must be the same.</exception>
		/// <exception cref="T:System.InvalidOperationException">Matrix is rank deficient.</exception>
		public Matrix Solve(Matrix value)
		{
			if (value == null)
			{
				throw new ArgumentNullException("value");	
			}

			if (value.Rows != QR.Rows)
			{
				throw new ArgumentException("Matrix row dimensions must agree.");
			}
			
			if (!this.FullRank) 
			{
				throw new InvalidOperationException("Matrix is rank deficient.");
			}
				
			// Copy right hand side
			int count = value.Columns;
			Matrix X = value.Clone();
			int m = QR.Rows;
			int n = QR.Columns;
			double[][] qr = QR.Array;
			
			// Compute Y = transpose(Q)*B
			for (int k = 0; k < n; k++) 
			{
				for (int j = 0; j < count; j++) 
				{
					double s = 0.0; 
					
					for (int i = k; i < m; i++)
					{
						s += qr[i][k] * X[i,j];
					}

					s = -s / qr[k][k];
					
					for (int i = k; i < m; i++)
					{
						X[i,j] += s * qr[i][k];
					}
				}
			}
				
			// Solve R*X = Y;
			for (int k = n-1; k >= 0; k--) 
			{
				for (int j = 0; j < count; j++) 
				{
					X[k,j] /= Rdiag[k];
				}
	
				for (int i = 0; i < k; i++) 
				{
					for (int j = 0; j < count; j++) 
					{
						X[i,j] -= X[k,j] * qr[i][k];
					}
				}
			}
	
			return X.Submatrix(0, n-1, 0, count-1);
		}

		/// <summary>Shows if the matrix <c>A</c> is of full rank.</summary>
		/// <value>The value is <see langword="true"/> if <c>R</c>, and hence <c>A</c>, has full rank.</value>
		public bool FullRank
		{
			get
			{
				int columns = this.QR.Columns;
				for (int i = 0; i < columns; i++)
				{
					if (this.Rdiag[i] == 0)
					{
						return false;
					}
				}

				return true;
			}			
		}
	
		/// <summary>Returns the upper triangular factor <c>R</c>.</summary>
		public Matrix UpperTriangularFactor
		{
			get
			{
				int n = this.QR.Columns;
				Matrix X = new Matrix(n, n);
				double[][] x = X.Array;
				double[][] qr = QR.Array;
				for (int i = 0; i < n; i++) 
				{
					for (int j = 0; j < n; j++) 
					{
						if (i < j)
						{
							x[i][j] = qr[i][j];
						}
						else if (i == j) 
						{
							x[i][j] = Rdiag[i];
						}
						else
						{
							x[i][j] = 0.0;
						}
					}
				}
	
				return X;
			}
		}

		/// <summary>Returns the orthogonal factor <c>Q</c>.</summary>
		public Matrix OrthogonalFactor
		{
			get
			{
				Matrix X = new Matrix(QR.Rows, QR.Columns);
				double[][] x = X.Array;
				double[][] qr = QR.Array;
				for (int k = QR.Columns - 1; k >= 0; k--) 
				{
					for (int i = 0; i < QR.Rows; i++)
					{
						x[i][k] = 0.0;
					}

					x[k][k] = 1.0;
					for (int j = k; j < QR.Columns; j++) 
					{
						if (qr[k][k] != 0) 
						{
							double s = 0.0;
				
							for (int i = k; i < QR.Rows; i++)
							{
								s += qr[i][k] * x[i][j];
							}

							s = -s / qr[k][k];
				
							for (int i = k; i < QR.Rows; i++)
							{
								x[i][j] += s * qr[i][k];
							}
						}
					}
				}

				return X;
			}
		}

		private static double Hypotenuse(double a, double b) 
		{
			if (Math.Abs(a) > Math.Abs(b))
			{
				double r = b / a;
				return Math.Abs(a) * Math.Sqrt(1 + r * r);
			}

			if (b != 0)
			{
				double r = a / b;
				return Math.Abs(b) * Math.Sqrt(1 + r * r);
			}

			return 0.0;
		}
	}
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -