⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ludecomposition.cs

📁 C#下的矩阵计算方法,从Japack该过来的,已经试用过,很好用.
💻 CS
字号:
// ----------------------------------------------
// Lutz Roeder's Mapack for .NET, September 2000
// Adapted from Mapack for COM and Jama routines.
// http://www.aisto.com/roeder/dotnet
// ----------------------------------------------
namespace Mapack
{
	using System;

	/// <summary>
	///   LU decomposition of a rectangular matrix.
	/// </summary>
	/// <remarks>
	///   For an m-by-n matrix <c>A</c> with m >= n, the LU decomposition is an m-by-n
	///   unit lower triangular matrix <c>L</c>, an n-by-n upper triangular matrix <c>U</c>,
	///   and a permutation vector <c>piv</c> of length m so that <c>A(piv)=L*U</c>.
	///   If m &lt; n, then <c>L</c> is m-by-m and <c>U</c> is m-by-n.
	///   The LU decompostion with pivoting always exists, even if the matrix is
	///   singular, so the constructor will never fail.  The primary use of the
	///   LU decomposition is in the solution of square systems of simultaneous
	///   linear equations. This will fail if <see cref="NonSingular"/> returns <see langword="false"/>.
	/// </remarks>
	public class LuDecomposition
	{
		private Matrix LU;
		private int pivotSign;
		private int[] pivotVector;

		/// <summary>Construct a LU decomposition.</summary>	
		public LuDecomposition(Matrix value)
		{
			if (value == null)
			{
				throw new ArgumentNullException("value");	
			}
			
			this.LU = (Matrix) value.Clone();
			double[][] lu = LU.Array;
			int rows = value.Rows;
			int columns = value.Columns;
			pivotVector = new int[rows];
			for (int i = 0; i < rows; i++)
			{
				pivotVector[i] = i;
			}

			pivotSign = 1;
			double[] LUrowi;
			double[] LUcolj = new double[rows];
	
			// Outer loop.
			for (int j = 0; j < columns; j++)
			{
				// Make a copy of the j-th column to localize references.
				for (int i = 0; i < rows; i++)
				{
					LUcolj[i] = lu[i][j];
				}
	
				// Apply previous transformations.
				for (int i = 0; i < rows; i++) 
				{
					LUrowi = lu[i];
	
					// Most of the time is spent in the following dot product.
					int kmax = Math.Min(i,j);
					double s = 0.0;
					for (int k = 0; k < kmax; k++)
					{
						s += LUrowi[k]*LUcolj[k];
					}
					LUrowi[j] = LUcolj[i] -= s;
				}
		 
				// Find pivot and exchange if necessary.
				int p = j;
				for (int i = j+1; i < rows; i++)
				{
					if (Math.Abs(LUcolj[i]) > Math.Abs(LUcolj[p]))
					{
						p = i;
					}
				}
	
				if (p != j)
				{
					for (int k = 0; k < columns; k++) 
					{
						double t = lu[p][k]; 
						lu[p][k] = lu[j][k]; 
						lu[j][k] = t;
					}
						
					int v = pivotVector[p]; 
					pivotVector[p] = pivotVector[j]; 
					pivotVector[j] = v;
						
					pivotSign = - pivotSign;
				}
	
				// Compute multipliers.
					 
				if (j < rows & lu[j][j] != 0.0) 
				{
					for (int i = j+1; i < rows; i++) 
					{
						lu[i][j] /= lu[j][j];
					}
				}
			}
		}

		/// <summary>Returns if the matrix is non-singular.</summary>
		public bool NonSingular
		{
			get 
			{
				for (int j = 0; j < LU.Columns; j++)
					if (LU[j, j] == 0)
						return false;
				return true;
			}
		}
	
		/// <summary>Returns the determinant of the matrix.</summary>
		public double Determinant
		{
			get
			{
				if (LU.Rows != LU.Columns) throw new ArgumentException("Matrix must be square.");
				double determinant = (double) pivotSign;
				for (int j = 0; j < LU.Columns; j++) 
					determinant *= LU[j, j];
				return determinant; 
			}
		}

		/// <summary>Returns the lower triangular factor <c>L</c> with <c>A=LU</c>.</summary>
		public Matrix LowerTriangularFactor
		{
			get
			{
				int rows = LU.Rows;
				int columns = LU.Columns;
				Matrix X = new Matrix(rows, columns);
				for (int i = 0; i < rows; i++) 
					for (int j = 0; j < columns; j++)
						if (i > j)
							X[i,j] = LU[i,j];
						else if (i == j)
							X[i,j] = 1.0;
						else
							X[i,j] = 0.0;
				return X;
			}
		}

		/// <summary>Returns the lower triangular factor <c>L</c> with <c>A=LU</c>.</summary>
		public Matrix UpperTriangularFactor
		{
			get
			{
				int rows = LU.Rows;
				int columns = LU.Columns;
				Matrix X = new Matrix(rows, columns);
				for (int i = 0; i < rows; i++)
					for (int j = 0; j < columns; j++) 
						if (i <= j)
							X[i,j] = LU[i,j];
						else
							X[i,j] = 0.0;
				return X;
			}
		}     	

		/// <summary>Returns the pivot permuation vector.</summary>
		public double[] PivotPermutationVector
		{
			get
			{
				int rows = LU.Rows;

				double[] p = new double[rows];
				for (int i = 0; i < rows; i++)
				{
					p[i] = (double) this.pivotVector[i];
				}

				return p;
			}
		}   

		/// <summary>Solves a set of equation systems of type <c>A * X = B</c>.</summary>
		/// <param name="value">Right hand side matrix with as many rows as <c>A</c> and any number of columns.</param>
		/// <returns>Matrix <c>X</c> so that <c>L * U * X = B</c>.</returns>
		public Matrix Solve(Matrix value)
		{
			if (value == null)
			{
				throw new ArgumentNullException("value");	
			}

			if (value.Rows != this.LU.Rows)
			{
				throw new ArgumentException("Invalid matrix dimensions.", "value");
			}
			
			if (!this.NonSingular) 
			{
				throw new InvalidOperationException("Matrix is singular");
			}
	
			// Copy right hand side with pivoting
			int count = value.Columns;
			Matrix X = value.Submatrix(pivotVector, 0, count-1);
	
			int rows = LU.Rows;
			int columns = LU.Columns;
			double[][] lu = LU.Array;
	
			// Solve L*Y = B(piv,:)
			for (int k = 0; k < columns; k++)
			{
				for (int i = k + 1; i < columns; i++)
				{
					for (int j = 0; j < count; j++)
					{
						X[i,j] -= X[k,j] * lu[i][k];
					}
				}
			}
	
			// Solve U*X = Y;
			for (int k = columns - 1; k >= 0; k--)
			{
				for (int j = 0; j < count; j++)
				{
					X[k,j] /= lu[k][k];
				}
	
				for (int i = 0; i < k; i++)
				{
					for (int j = 0; j < count; j++)
					{
						X[i,j] -= X[k,j] * lu[i][k];
					}
				}
			}
				
			return X;
		}
	}
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -