📄 mapack.xml
字号:
</member>
<member name="M:Mapack.Matrix.Transpose">
<summary>Returns the transposed matrix.</summary>
</member>
<member name="M:Mapack.Matrix.Negate(Mapack.Matrix)">
<summary>Unary minus.</summary>
</member>
<member name="M:Mapack.Matrix.op_UnaryNegation(Mapack.Matrix)">
<summary>Unary minus.</summary>
</member>
<member name="M:Mapack.Matrix.op_Equality(Mapack.Matrix,Mapack.Matrix)">
<summary>Matrix equality.</summary>
</member>
<member name="M:Mapack.Matrix.op_Inequality(Mapack.Matrix,Mapack.Matrix)">
<summary>Matrix inequality.</summary>
</member>
<member name="M:Mapack.Matrix.Add(Mapack.Matrix,Mapack.Matrix)">
<summary>Matrix addition.</summary>
</member>
<member name="M:Mapack.Matrix.op_Addition(Mapack.Matrix,Mapack.Matrix)">
<summary>Matrix addition.</summary>
</member>
<member name="M:Mapack.Matrix.Subtract(Mapack.Matrix,Mapack.Matrix)">
<summary>Matrix subtraction.</summary>
</member>
<member name="M:Mapack.Matrix.op_Subtraction(Mapack.Matrix,Mapack.Matrix)">
<summary>Matrix subtraction.</summary>
</member>
<member name="M:Mapack.Matrix.Multiply(Mapack.Matrix,System.Double)">
<summary>Matrix-scalar multiplication.</summary>
</member>
<member name="M:Mapack.Matrix.op_Multiply(Mapack.Matrix,System.Double)">
<summary>Matrix-scalar multiplication.</summary>
</member>
<member name="M:Mapack.Matrix.Multiply(Mapack.Matrix,Mapack.Matrix)">
<summary>Matrix-matrix multiplication.</summary>
</member>
<member name="M:Mapack.Matrix.op_Multiply(Mapack.Matrix,Mapack.Matrix)">
<summary>Matrix-matrix multiplication.</summary>
</member>
<member name="M:Mapack.Matrix.Solve(Mapack.Matrix)">
<summary>Returns the LHS solution vetor if the matrix is square or the least squares solution otherwise.</summary>
</member>
<member name="M:Mapack.Matrix.Random(System.Int32,System.Int32)">
<summary>Returns a matrix filled with random values.</summary>
</member>
<member name="M:Mapack.Matrix.Diagonal(System.Int32,System.Int32,System.Double)">
<summary>Returns a diagonal matrix of the given size.</summary>
</member>
<member name="M:Mapack.Matrix.ToString">
<summary>Returns the matrix in a textual form.</summary>
</member>
<member name="P:Mapack.Matrix.Rows">
<summary>Returns the number of columns.</summary>
</member>
<member name="P:Mapack.Matrix.Columns">
<summary>Returns the number of columns.</summary>
</member>
<member name="P:Mapack.Matrix.Square">
<summary>Return <see langword="true"/> if the matrix is a square matrix.</summary>
</member>
<member name="P:Mapack.Matrix.Symmetric">
<summary>Returns <see langword="true"/> if the matrix is symmetric.</summary>
</member>
<member name="P:Mapack.Matrix.Item(System.Int32,System.Int32)">
<summary>Access the value at the given location.</summary>
</member>
<member name="P:Mapack.Matrix.Norm1">
<summary>Returns the One Norm for the matrix.</summary>
<value>The maximum column sum.</value>
</member>
<member name="P:Mapack.Matrix.InfinityNorm">
<summary>Returns the Infinity Norm for the matrix.</summary>
<value>The maximum row sum.</value>
</member>
<member name="P:Mapack.Matrix.FrobeniusNorm">
<summary>Returns the Frobenius Norm for the matrix.</summary>
<value>The square root of sum of squares of all elements.</value>
</member>
<member name="P:Mapack.Matrix.Inverse">
<summary>Inverse of the matrix if matrix is square, pseudoinverse otherwise.</summary>
</member>
<member name="P:Mapack.Matrix.Determinant">
<summary>Determinant if matrix is square.</summary>
</member>
<member name="P:Mapack.Matrix.Trace">
<summary>Returns the trace of the matrix.</summary>
<returns>Sum of the diagonal elements.</returns>
</member>
<member name="T:Mapack.QrDecomposition">
<summary>
QR decomposition for a rectangular matrix.
</summary>
<remarks>
For an m-by-n matrix <c>A</c> with <c>m >= n</c>, the QR decomposition is an m-by-n
orthogonal matrix <c>Q</c> and an n-by-n upper triangular
matrix <c>R</c> so that <c>A = Q * R</c>.
The QR decompostion always exists, even if the matrix does not have
full rank, so the constructor will never fail. The primary use of the
QR decomposition is in the least squares solution of nonsquare systems
of simultaneous linear equations.
This will fail if <see cref="P:Mapack.QrDecomposition.FullRank"/> returns <see langword="false"/>.
</remarks>
</member>
<member name="M:Mapack.QrDecomposition.#ctor(Mapack.Matrix)">
<summary>Construct a QR decomposition.</summary>
</member>
<member name="M:Mapack.QrDecomposition.Solve(Mapack.Matrix)">
<summary>Least squares solution of <c>A * X = B</c></summary>
<param name="value">Right-hand-side matrix with as many rows as <c>A</c> and any number of columns.</param>
<returns>A matrix that minimized the two norm of <c>Q * R * X - B</c>.</returns>
<exception cref="T:System.ArgumentException">Matrix row dimensions must be the same.</exception>
<exception cref="T:System.InvalidOperationException">Matrix is rank deficient.</exception>
</member>
<member name="P:Mapack.QrDecomposition.FullRank">
<summary>Shows if the matrix <c>A</c> is of full rank.</summary>
<value>The value is <see langword="true"/> if <c>R</c>, and hence <c>A</c>, has full rank.</value>
</member>
<member name="P:Mapack.QrDecomposition.UpperTriangularFactor">
<summary>Returns the upper triangular factor <c>R</c>.</summary>
</member>
<member name="P:Mapack.QrDecomposition.OrthogonalFactor">
<summary>Returns the orthogonal factor <c>Q</c>.</summary>
</member>
<member name="T:Mapack.SingularValueDecomposition">
<summary>
Singular Value Decomposition for a rectangular matrix.
</summary>
<remarks>
For an m-by-n matrix <c>A</c> with <c>m >= n</c>, the singular value decomposition is
an m-by-n orthogonal matrix <c>U</c>, an n-by-n diagonal matrix <c>S</c>, and
an n-by-n orthogonal matrix <c>V</c> so that <c>A = U * S * V'</c>.
The singular values, <c>sigma[k] = S[k,k]</c>, are ordered so that
<c>sigma[0] >= sigma[1] >= ... >= sigma[n-1]</c>.
The singular value decompostion always exists, so the constructor will
never fail. The matrix condition number and the effective numerical
rank can be computed from this decomposition.
</remarks>
</member>
<member name="M:Mapack.SingularValueDecomposition.#ctor(Mapack.Matrix)">
<summary>Construct singular value decomposition.</summary>
</member>
<member name="P:Mapack.SingularValueDecomposition.Condition">
<summary>Returns the condition number <c>max(S) / min(S)</c>.</summary>
</member>
<member name="P:Mapack.SingularValueDecomposition.Norm2">
<summary>Returns the Two norm.</summary>
</member>
<member name="P:Mapack.SingularValueDecomposition.Rank">
<summary>Returns the effective numerical matrix rank.</summary>
<value>Number of non-negligible singular values.</value>
</member>
<member name="P:Mapack.SingularValueDecomposition.Diagonal">
<summary>Return the one-dimensional array of singular values.</summary>
</member>
</members>
</doc>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -