⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pfplot.m

📁 多维数据分析,有nPLS,PARAFAC,TURKER等
💻 M
字号:
function pfplot(X,Factors,Weights,Option);
%PFPLOT plot parafac model
%
% See also:
% 'parafac'
%
%
% pfplot(X,Factors,Weights,Option);
% Different aspects for evaluation of the solution.
%
% Option # = 1
% 1	NOT ACCESIBLE
% 2	NOT ACCESIBLE
% 3	DIAGONALITY PLOT
% 4	PLOTS OF RESIDUAL VARIANCE
% 5	PLOTS OF LEVERAGE
% 6	RESIDUALS (STANDARD DEVIATION) VERSUS LEVERAGE
% 7	NORMAL PROBABILITY PLOT
% 8	LOADING PLOT
% 
% You HAVE to input all four inputs. If you have no weights, just input [].
% The last input must be an 8-vector with ones if you want the plot and
% zeros else. E.g.
%
% pfplot(X,factors,[],[0 0 1 0 0 0 0 1]);
%
% to have the diagonality and the loading plot
%

% $ Version 1.02 $ Date 28. July 1998 $ Not compiled $
% $ Version 1.03 $ Date 6. October 1999 $ Changed to handle missing values correctly$
% $ Version 2.00 $ May 2001 $ Changed to array notation $ RB $ Not compiled $
%
% Copyright, 1998 - 
% This M-file and the code in it belongs to the holder of the
% copyrights and is made public under the following constraints:
% It must not be changed or modified and code cannot be added.
% The file must be regarded as read-only. Furthermore, the
% code can not be made part of anything but the 'N-way Toolbox'.
% In case of doubt, contact the holder of the copyrights.
%
% Rasmus Bro
% Chemometrics Group, Food Technology
% Department of Food and Dairy Science
% Royal Veterinary and Agricultutal University
% Rolighedsvej 30, DK-1958 Frederiksberg, Denmark
% Phone  +45 35283296
% Fax    +45 35283245
% E-mail rb@kvl.dk
%

DimX = size(X);
X = reshape(X,DimX(1),prod(DimX(2:end)));

% Convert to old format
NewLoad = Factors;
ff = [];
for f=1:length(Factors)
 ff=[ff;Factors{f}(:)];
end
Factors = ff;


factors = Factors;
ord=length(DimX);
Fac=length(factors)/sum(DimX);
lidx(1,:)=[1 DimX(1)*Fac];
for i=2:ord
  lidx=[lidx;[lidx(i-1,2)+1 sum(DimX(1:i))*Fac]];
end
if Option(3)==1
 % ESTIMATE DIAGONALITY OF T3-CORE
 diagonality=corcond(reshape(X,DimX),NewLoad,Weights,1);
end
model=nmodel(NewLoad);
model = reshape(model,DimX(1),prod(DimX(2:end)));
if Option(4)==1
% PLOTS OF RESIDUAL VARIANCE
  figure,eval(['set(gcf,''Name'',''Residual variance'');']);
  aa=ceil(sqrt(ord));bb=ceil(ord/aa);
  for i=1:ord
    r=nshape(reshape(X-model,DimX),i)';
    varian=stdnan(r).^2;
    subplot(aa,bb,i)
      plot(varian)
      if DimX(i)<30
        hold on
        plot(varian,'r+')
      end
      eval(['xlabel(''Mode ', num2str(i),''');']);
      ylabel('Residual variance');
  end
end
if Option(5)==1
% PLOTS OF LEVERAGE
figure
eval(['set(gcf,''Name'',''Leverage'');']);
aa=ceil(sqrt(ord));
bb=ceil(ord/aa);
for i=1:ord
    A=reshape(factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
    lev=diag(A*pinv(A'*A)*A');
    subplot(aa,bb,i)
    if std(lev)>eps
        plot(lev+100*eps,'+')
        for j=1:DimX(i)
            text(j,lev(j),num2str(j))
        end
    else
        warning('Leverage is constant')
    end
    eval(['xlabel(''Mode ', num2str(i),''');']);
    ylabel('Leverage');
end
end
if Option(6)==1
% RESIDUALS (STANDARD DEVIATION) VERSUS LEVERAGE
figure
eval(['set(gcf,''Name'',''Residuals vs. Leverages'');']);
aa=ceil(sqrt(ord));
bb=ceil(ord/aa);
for i=1:ord
  subplot(aa,bb,i)
  A=reshape(factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
  lev=diag(A*pinv(A'*A)*A')'+100*eps;
  r=nshape(reshape(X-model,DimX),i)';
  stand=stdnan(r);
  if std(lev)>eps
      plot(lev,stand,'+')
      for j=1:DimX(i)
          text(lev(j),stand(j),num2str(j))
      end
      eval(['xlabel(''Leverage in mode ', num2str(i),''');']);
      ylabel('Standard deviation');
  else
      warning('Leverage is constant')
  end
end
end
if Option(7)==1
% NORMAL PROBABILITY PLOT
if exist('normplot')
    disp(' ')
    disp(' Normal probability plots are time-consuming')
    disp(' They are made in the statistics toolbox though, so we can''t change that!')
    figure,
    eval(['set(gcf,''Name'',''Normal probability of residuals'');']);
    aa=ceil(sqrt(ord));
    bb=ceil(ord/aa);
    r=nshape(reshape(X-model,DimX),i)';
    r=r(:);
    normplot(r(find(~isnan(r))))
 end
end
if Option(8)==1
% LOADING PLOT
  if sum(Option)>1
    figure
  end
  eval(['set(gcf,''Name'',''Loadings'');']);
  aa=ceil(sqrt(ord));
  bb=ceil(ord/aa);
  for i=1:ord
    subplot(aa,bb,i)
    A=reshape(factors(lidx(i,1):lidx(i,2)),DimX(i),Fac);
    plot(A)
    eval(['xlabel(''Mode ', num2str(i),''');']);
    ylabel('Loading');
  end
end
drawnow

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -