⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtoa.java

📁 javascript语言的解释器源码
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
    }    /* Return b * 5^k.  k must be nonnegative. */    // XXXX the C version built a cache of these    static BigInteger pow5mult(BigInteger b, int k)    {        return b.multiply(BigInteger.valueOf(5).pow(k));    }    static boolean roundOff(StringBuffer buf)    {        int i = buf.length();        while (i != 0) {            --i;            char c = buf.charAt(i);            if (c != '9') {                buf.setCharAt(i, (char)(c + 1));                buf.setLength(i + 1);                return false;            }        }        buf.setLength(0);        return true;    }    /* Always emits at least one digit. */    /* If biasUp is set, then rounding in modes 2 and 3 will round away from zero     * when the number is exactly halfway between two representable values.  For example,     * rounding 2.5 to zero digits after the decimal point will return 3 and not 2.     * 2.49 will still round to 2, and 2.51 will still round to 3. */    /* bufsize should be at least 20 for modes 0 and 1.  For the other modes,     * bufsize should be two greater than the maximum number of output characters expected. */    static int    JS_dtoa(double d, int mode, boolean biasUp, int ndigits,                    boolean[] sign, StringBuffer buf)    {        /*  Arguments ndigits, decpt, sign are similar to those            of ecvt and fcvt; trailing zeros are suppressed from            the returned string.  If not null, *rve is set to point            to the end of the return value.  If d is +-Infinity or NaN,            then *decpt is set to 9999.            mode:            0 ==> shortest string that yields d when read in            and rounded to nearest.            1 ==> like 0, but with Steele & White stopping rule;            e.g. with IEEE P754 arithmetic , mode 0 gives            1e23 whereas mode 1 gives 9.999999999999999e22.            2 ==> max(1,ndigits) significant digits.  This gives a            return value similar to that of ecvt, except            that trailing zeros are suppressed.            3 ==> through ndigits past the decimal point.  This            gives a return value similar to that from fcvt,            except that trailing zeros are suppressed, and            ndigits can be negative.            4-9 should give the same return values as 2-3, i.e.,            4 <= mode <= 9 ==> same return as mode            2 + (mode & 1).  These modes are mainly for            debugging; often they run slower but sometimes            faster than modes 2-3.            4,5,8,9 ==> left-to-right digit generation.            6-9 ==> don't try fast floating-point estimate            (if applicable).            Values of mode other than 0-9 are treated as mode 0.            Sufficient space is allocated to the return value            to hold the suppressed trailing zeros.        */        int b2, b5, i, ieps, ilim, ilim0, ilim1,            j, j1, k, k0, m2, m5, s2, s5;        char dig;        long L;        long x;        BigInteger b, b1, delta, mlo, mhi, S;        int[] be = new int[1];        int[] bbits = new int[1];        double d2, ds, eps;        boolean spec_case, denorm, k_check, try_quick, leftright;        if ((word0(d) & Sign_bit) != 0) {            /* set sign for everything, including 0's and NaNs */            sign[0] = true;            // word0(d) &= ~Sign_bit;  /* clear sign bit */            d = setWord0(d, word0(d) & ~Sign_bit);        }        else            sign[0] = false;        if ((word0(d) & Exp_mask) == Exp_mask) {            /* Infinity or NaN */            buf.append(((word1(d) == 0) && ((word0(d) & Frac_mask) == 0)) ? "Infinity" : "NaN");            return 9999;        }        if (d == 0) {//          no_digits:            buf.setLength(0);            buf.append('0');        /* copy "0" to buffer */            return 1;        }        b = d2b(d, be, bbits);        if ((i = (int)(word0(d) >>> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {            d2 = setWord0(d, (word0(d) & Frac_mask1) | Exp_11);            /* log(x)   ~=~ log(1.5) + (x-1.5)/1.5             * log10(x)  =  log(x) / log(10)             *      ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))             * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)             *             * This suggests computing an approximation k to log10(d) by             *             * k = (i - Bias)*0.301029995663981             *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );             *             * We want k to be too large rather than too small.             * The error in the first-order Taylor series approximation             * is in our favor, so we just round up the constant enough             * to compensate for any error in the multiplication of             * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,             * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,             * adding 1e-13 to the constant term more than suffices.             * Hence we adjust the constant term to 0.1760912590558.             * (We could get a more accurate k by invoking log10,             *  but this is probably not worthwhile.)             */            i -= Bias;            denorm = false;        }        else {            /* d is denormalized */            i = bbits[0] + be[0] + (Bias + (P-1) - 1);            x = (i > 32) ? word0(d) << (64 - i) | word1(d) >>> (i - 32) : word1(d) << (32 - i);//            d2 = x;//            word0(d2) -= 31*Exp_msk1; /* adjust exponent */            d2 = setWord0(x, word0(x) - 31*Exp_msk1);            i -= (Bias + (P-1) - 1) + 1;            denorm = true;        }        /* At this point d = f*2^i, where 1 <= f < 2.  d2 is an approximation of f. */        ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;        k = (int)ds;        if (ds < 0.0 && ds != k)            k--;    /* want k = floor(ds) */        k_check = true;        if (k >= 0 && k <= Ten_pmax) {            if (d < tens[k])                k--;            k_check = false;        }        /* At this point floor(log10(d)) <= k <= floor(log10(d))+1.           If k_check is zero, we're guaranteed that k = floor(log10(d)). */        j = bbits[0] - i - 1;        /* At this point d = b/2^j, where b is an odd integer. */        if (j >= 0) {            b2 = 0;            s2 = j;        }        else {            b2 = -j;            s2 = 0;        }        if (k >= 0) {            b5 = 0;            s5 = k;            s2 += k;        }        else {            b2 -= k;            b5 = -k;            s5 = 0;        }        /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer,           b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */        if (mode < 0 || mode > 9)            mode = 0;        try_quick = true;        if (mode > 5) {            mode -= 4;            try_quick = false;        }        leftright = true;        ilim = ilim1 = 0;        switch(mode) {            case 0:            case 1:                ilim = ilim1 = -1;                i = 18;                ndigits = 0;                break;            case 2:                leftright = false;                /* no break */            case 4:                if (ndigits <= 0)                    ndigits = 1;                ilim = ilim1 = i = ndigits;                break;            case 3:                leftright = false;                /* no break */            case 5:                i = ndigits + k + 1;                ilim = i;                ilim1 = i - 1;                if (i <= 0)                    i = 1;        }        /* ilim is the maximum number of significant digits we want, based on k and ndigits. */        /* ilim1 is the maximum number of significant digits we want, based on k and ndigits,           when it turns out that k was computed too high by one. */        boolean fast_failed = false;        if (ilim >= 0 && ilim <= Quick_max && try_quick) {            /* Try to get by with floating-point arithmetic. */            i = 0;            d2 = d;            k0 = k;            ilim0 = ilim;            ieps = 2; /* conservative */            /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */            if (k > 0) {                ds = tens[k&0xf];                j = k >> 4;                if ((j & Bletch) != 0) {                    /* prevent overflows */                    j &= Bletch - 1;                    d /= bigtens[n_bigtens-1];                    ieps++;                }                for(; (j != 0); j >>= 1, i++)                    if ((j & 1) != 0) {                        ieps++;                        ds *= bigtens[i];                    }                d /= ds;            }            else if ((j1 = -k) != 0) {                d *= tens[j1 & 0xf];                for(j = j1 >> 4; (j != 0); j >>= 1, i++)                    if ((j & 1) != 0) {                        ieps++;                        d *= bigtens[i];                    }            }            /* Check that k was computed correctly. */            if (k_check && d < 1.0 && ilim > 0) {                if (ilim1 <= 0)                    fast_failed = true;                else {                    ilim = ilim1;                    k--;                    d *= 10.;                    ieps++;                }            }            /* eps bounds the cumulative error. *///            eps = ieps*d + 7.0;//            word0(eps) -= (P-1)*Exp_msk1;            eps = ieps*d + 7.0;            eps = setWord0(eps, word0(eps) - (P-1)*Exp_msk1);            if (ilim == 0) {                S = mhi = null;                d -= 5.0;                if (d > eps) {                    buf.append('1');                    k++;                    return k + 1;                }                if (d < -eps) {                    buf.setLength(0);                    buf.append('0');        /* copy "0" to buffer */                    return 1;                }                fast_failed = true;            }            if (!fast_failed) {                fast_failed = true;                if (leftright) {                    /* Use Steele & White method of only                     * generating digits needed.                     */                    eps = 0.5/tens[ilim-1] - eps;                    for(i = 0;;) {                        L = (long)d;                        d -= L;                        buf.append((char)('0' + L));                        if (d < eps) {                            return k + 1;                        }                        if (1.0 - d < eps) {//                            goto bump_up;                                char lastCh;                                while (true) {                                    lastCh = buf.charAt(buf.length() - 1);                                    buf.setLength(buf.length() - 1);                                    if (lastCh != '9') break;                                    if (buf.length() == 0) {                                        k++;                                        lastCh = '0';                                        break;                                    }                                }                                buf.append((char)(lastCh + 1));                                return k + 1;                        }                        if (++i >= ilim)                            break;                        eps *= 10.0;                        d *= 10.0;                    }                }                else {                    /* Generate ilim digits, then fix them up. */                    eps *= tens[ilim-1];                    for(i = 1;; i++, d *= 10.0) {                        L = (long)d;                        d -= L;                        buf.append((char)('0' + L));                        if (i == ilim) {                            if (d > 0.5 + eps) {//                                goto bump_up;                                char lastCh;                                while (true) {                                    lastCh = buf.charAt(buf.length() - 1);                                    buf.setLength(buf.length() - 1);                                    if (lastCh != '9') break;                                    if (buf.length() == 0) {                                        k++;                                        lastCh = '0';                                        break;                                    }                                }                                buf.append((char)(lastCh + 1));                                return k + 1;                            }                            else                                if (d < 0.5 - eps) {                                    while (buf.charAt(buf.length() - 1) == '0')                                        buf.setLength(buf.length() - 1);//                                    while(*--s == '0') ;//                                    s++;                                    return k + 1;                                }                            break;                        }                    }                }            }            if (fast_failed) {                buf.setLength(0);                d = d2;                k = k0;                ilim = ilim0;            }        }        /* Do we have a "small" integer? */        if (be[0] >= 0 && k <= Int_max) {            /* Yes. */            ds = tens[k];            if (ndigits < 0 && ilim <= 0) {                S = mhi = null;                if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds)) {                    buf.setLength(0);                    buf.append('0');        /* copy "0" to buffer */                    return 1;                }                buf.append('1');                k++;                return k + 1;            }            for(i = 1;; i++) {                L = (long) (d / ds);                d -= L*ds;                buf.append((char)('0' + L));                if (i == ilim) {                    d += d;                    if ((d > ds) || (d == ds && (((L & 1) != 0) || biasUp))) {//                    bump_up://                        while(*--s == '9')//                            if (s == buf) {//                                k++;//                                *s = '0';//                                break;//                            }//                        ++*s++;                        char lastCh;                        while (true) {                            lastCh = buf.charAt(buf.length() - 1);                            buf.setLength(buf.length() - 1);                            if (lastCh != '9') break;                            if (buf.length() == 0) {                                k++;                                lastCh = '0';                                break;                            }                        }                        buf.append((char)(lastCh + 1));                    }                    break;                }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -