📄 dtoa.java
字号:
} /* Return b * 5^k. k must be nonnegative. */ // XXXX the C version built a cache of these static BigInteger pow5mult(BigInteger b, int k) { return b.multiply(BigInteger.valueOf(5).pow(k)); } static boolean roundOff(StringBuffer buf) { int i = buf.length(); while (i != 0) { --i; char c = buf.charAt(i); if (c != '9') { buf.setCharAt(i, (char)(c + 1)); buf.setLength(i + 1); return false; } } buf.setLength(0); return true; } /* Always emits at least one digit. */ /* If biasUp is set, then rounding in modes 2 and 3 will round away from zero * when the number is exactly halfway between two representable values. For example, * rounding 2.5 to zero digits after the decimal point will return 3 and not 2. * 2.49 will still round to 2, and 2.51 will still round to 3. */ /* bufsize should be at least 20 for modes 0 and 1. For the other modes, * bufsize should be two greater than the maximum number of output characters expected. */ static int JS_dtoa(double d, int mode, boolean biasUp, int ndigits, boolean[] sign, StringBuffer buf) { /* Arguments ndigits, decpt, sign are similar to those of ecvt and fcvt; trailing zeros are suppressed from the returned string. If not null, *rve is set to point to the end of the return value. If d is +-Infinity or NaN, then *decpt is set to 9999. mode: 0 ==> shortest string that yields d when read in and rounded to nearest. 1 ==> like 0, but with Steele & White stopping rule; e.g. with IEEE P754 arithmetic , mode 0 gives 1e23 whereas mode 1 gives 9.999999999999999e22. 2 ==> max(1,ndigits) significant digits. This gives a return value similar to that of ecvt, except that trailing zeros are suppressed. 3 ==> through ndigits past the decimal point. This gives a return value similar to that from fcvt, except that trailing zeros are suppressed, and ndigits can be negative. 4-9 should give the same return values as 2-3, i.e., 4 <= mode <= 9 ==> same return as mode 2 + (mode & 1). These modes are mainly for debugging; often they run slower but sometimes faster than modes 2-3. 4,5,8,9 ==> left-to-right digit generation. 6-9 ==> don't try fast floating-point estimate (if applicable). Values of mode other than 0-9 are treated as mode 0. Sufficient space is allocated to the return value to hold the suppressed trailing zeros. */ int b2, b5, i, ieps, ilim, ilim0, ilim1, j, j1, k, k0, m2, m5, s2, s5; char dig; long L; long x; BigInteger b, b1, delta, mlo, mhi, S; int[] be = new int[1]; int[] bbits = new int[1]; double d2, ds, eps; boolean spec_case, denorm, k_check, try_quick, leftright; if ((word0(d) & Sign_bit) != 0) { /* set sign for everything, including 0's and NaNs */ sign[0] = true; // word0(d) &= ~Sign_bit; /* clear sign bit */ d = setWord0(d, word0(d) & ~Sign_bit); } else sign[0] = false; if ((word0(d) & Exp_mask) == Exp_mask) { /* Infinity or NaN */ buf.append(((word1(d) == 0) && ((word0(d) & Frac_mask) == 0)) ? "Infinity" : "NaN"); return 9999; } if (d == 0) {// no_digits: buf.setLength(0); buf.append('0'); /* copy "0" to buffer */ return 1; } b = d2b(d, be, bbits); if ((i = (int)(word0(d) >>> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) { d2 = setWord0(d, (word0(d) & Frac_mask1) | Exp_11); /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 * log10(x) = log(x) / log(10) * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) * * This suggests computing an approximation k to log10(d) by * * k = (i - Bias)*0.301029995663981 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); * * We want k to be too large rather than too small. * The error in the first-order Taylor series approximation * is in our favor, so we just round up the constant enough * to compensate for any error in the multiplication of * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, * adding 1e-13 to the constant term more than suffices. * Hence we adjust the constant term to 0.1760912590558. * (We could get a more accurate k by invoking log10, * but this is probably not worthwhile.) */ i -= Bias; denorm = false; } else { /* d is denormalized */ i = bbits[0] + be[0] + (Bias + (P-1) - 1); x = (i > 32) ? word0(d) << (64 - i) | word1(d) >>> (i - 32) : word1(d) << (32 - i);// d2 = x;// word0(d2) -= 31*Exp_msk1; /* adjust exponent */ d2 = setWord0(x, word0(x) - 31*Exp_msk1); i -= (Bias + (P-1) - 1) + 1; denorm = true; } /* At this point d = f*2^i, where 1 <= f < 2. d2 is an approximation of f. */ ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; k = (int)ds; if (ds < 0.0 && ds != k) k--; /* want k = floor(ds) */ k_check = true; if (k >= 0 && k <= Ten_pmax) { if (d < tens[k]) k--; k_check = false; } /* At this point floor(log10(d)) <= k <= floor(log10(d))+1. If k_check is zero, we're guaranteed that k = floor(log10(d)). */ j = bbits[0] - i - 1; /* At this point d = b/2^j, where b is an odd integer. */ if (j >= 0) { b2 = 0; s2 = j; } else { b2 = -j; s2 = 0; } if (k >= 0) { b5 = 0; s5 = k; s2 += k; } else { b2 -= k; b5 = -k; s5 = 0; } /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer, b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */ if (mode < 0 || mode > 9) mode = 0; try_quick = true; if (mode > 5) { mode -= 4; try_quick = false; } leftright = true; ilim = ilim1 = 0; switch(mode) { case 0: case 1: ilim = ilim1 = -1; i = 18; ndigits = 0; break; case 2: leftright = false; /* no break */ case 4: if (ndigits <= 0) ndigits = 1; ilim = ilim1 = i = ndigits; break; case 3: leftright = false; /* no break */ case 5: i = ndigits + k + 1; ilim = i; ilim1 = i - 1; if (i <= 0) i = 1; } /* ilim is the maximum number of significant digits we want, based on k and ndigits. */ /* ilim1 is the maximum number of significant digits we want, based on k and ndigits, when it turns out that k was computed too high by one. */ boolean fast_failed = false; if (ilim >= 0 && ilim <= Quick_max && try_quick) { /* Try to get by with floating-point arithmetic. */ i = 0; d2 = d; k0 = k; ilim0 = ilim; ieps = 2; /* conservative */ /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */ if (k > 0) { ds = tens[k&0xf]; j = k >> 4; if ((j & Bletch) != 0) { /* prevent overflows */ j &= Bletch - 1; d /= bigtens[n_bigtens-1]; ieps++; } for(; (j != 0); j >>= 1, i++) if ((j & 1) != 0) { ieps++; ds *= bigtens[i]; } d /= ds; } else if ((j1 = -k) != 0) { d *= tens[j1 & 0xf]; for(j = j1 >> 4; (j != 0); j >>= 1, i++) if ((j & 1) != 0) { ieps++; d *= bigtens[i]; } } /* Check that k was computed correctly. */ if (k_check && d < 1.0 && ilim > 0) { if (ilim1 <= 0) fast_failed = true; else { ilim = ilim1; k--; d *= 10.; ieps++; } } /* eps bounds the cumulative error. */// eps = ieps*d + 7.0;// word0(eps) -= (P-1)*Exp_msk1; eps = ieps*d + 7.0; eps = setWord0(eps, word0(eps) - (P-1)*Exp_msk1); if (ilim == 0) { S = mhi = null; d -= 5.0; if (d > eps) { buf.append('1'); k++; return k + 1; } if (d < -eps) { buf.setLength(0); buf.append('0'); /* copy "0" to buffer */ return 1; } fast_failed = true; } if (!fast_failed) { fast_failed = true; if (leftright) { /* Use Steele & White method of only * generating digits needed. */ eps = 0.5/tens[ilim-1] - eps; for(i = 0;;) { L = (long)d; d -= L; buf.append((char)('0' + L)); if (d < eps) { return k + 1; } if (1.0 - d < eps) {// goto bump_up; char lastCh; while (true) { lastCh = buf.charAt(buf.length() - 1); buf.setLength(buf.length() - 1); if (lastCh != '9') break; if (buf.length() == 0) { k++; lastCh = '0'; break; } } buf.append((char)(lastCh + 1)); return k + 1; } if (++i >= ilim) break; eps *= 10.0; d *= 10.0; } } else { /* Generate ilim digits, then fix them up. */ eps *= tens[ilim-1]; for(i = 1;; i++, d *= 10.0) { L = (long)d; d -= L; buf.append((char)('0' + L)); if (i == ilim) { if (d > 0.5 + eps) {// goto bump_up; char lastCh; while (true) { lastCh = buf.charAt(buf.length() - 1); buf.setLength(buf.length() - 1); if (lastCh != '9') break; if (buf.length() == 0) { k++; lastCh = '0'; break; } } buf.append((char)(lastCh + 1)); return k + 1; } else if (d < 0.5 - eps) { while (buf.charAt(buf.length() - 1) == '0') buf.setLength(buf.length() - 1);// while(*--s == '0') ;// s++; return k + 1; } break; } } } } if (fast_failed) { buf.setLength(0); d = d2; k = k0; ilim = ilim0; } } /* Do we have a "small" integer? */ if (be[0] >= 0 && k <= Int_max) { /* Yes. */ ds = tens[k]; if (ndigits < 0 && ilim <= 0) { S = mhi = null; if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds)) { buf.setLength(0); buf.append('0'); /* copy "0" to buffer */ return 1; } buf.append('1'); k++; return k + 1; } for(i = 1;; i++) { L = (long) (d / ds); d -= L*ds; buf.append((char)('0' + L)); if (i == ilim) { d += d; if ((d > ds) || (d == ds && (((L & 1) != 0) || biasUp))) {// bump_up:// while(*--s == '9')// if (s == buf) {// k++;// *s = '0';// break;// }// ++*s++; char lastCh; while (true) { lastCh = buf.charAt(buf.length() - 1); buf.setLength(buf.length() - 1); if (lastCh != '9') break; if (buf.length() == 0) { k++; lastCh = '0'; break; } } buf.append((char)(lastCh + 1)); } break; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -