⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hdefs.c

📁 The Valgrind distribution has multiple tools. The most popular is the memory checking tool (called M
💻 C
📖 第 1 页 / 共 5 页
字号:
/*---------------------------------------------------------------*//*---                                                         ---*//*--- This file (host-x86/hdefs.c) is                         ---*//*--- Copyright (C) OpenWorks LLP.  All rights reserved.      ---*//*---                                                         ---*//*---------------------------------------------------------------*//*   This file is part of LibVEX, a library for dynamic binary   instrumentation and translation.   Copyright (C) 2004-2006 OpenWorks LLP.  All rights reserved.   This library is made available under a dual licensing scheme.   If you link LibVEX against other code all of which is itself   licensed under the GNU General Public License, version 2 dated June   1991 ("GPL v2"), then you may use LibVEX under the terms of the GPL   v2, as appearing in the file LICENSE.GPL.  If the file LICENSE.GPL   is missing, you can obtain a copy of the GPL v2 from the Free   Software Foundation Inc., 51 Franklin St, Fifth Floor, Boston, MA   02110-1301, USA.   For any other uses of LibVEX, you must first obtain a commercial   license from OpenWorks LLP.  Please contact info@open-works.co.uk   for information about commercial licensing.   This software is provided by OpenWorks LLP "as is" and any express   or implied warranties, including, but not limited to, the implied   warranties of merchantability and fitness for a particular purpose   are disclaimed.  In no event shall OpenWorks LLP be liable for any   direct, indirect, incidental, special, exemplary, or consequential   damages (including, but not limited to, procurement of substitute   goods or services; loss of use, data, or profits; or business   interruption) however caused and on any theory of liability,   whether in contract, strict liability, or tort (including   negligence or otherwise) arising in any way out of the use of this   software, even if advised of the possibility of such damage.   Neither the names of the U.S. Department of Energy nor the   University of California nor the names of its contributors may be   used to endorse or promote products derived from this software   without prior written permission.*/#include "libvex_basictypes.h"#include "libvex.h"#include "libvex_trc_values.h"#include "main/vex_util.h"#include "host-generic/h_generic_regs.h"#include "host-x86/hdefs.h"/* --------- Registers. --------- */void ppHRegX86 ( HReg reg ) {   Int r;   static HChar* ireg32_names[8]      = { "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi" };   /* Be generic for all virtual regs. */   if (hregIsVirtual(reg)) {      ppHReg(reg);      return;   }   /* But specific for real regs. */   switch (hregClass(reg)) {      case HRcInt32:         r = hregNumber(reg);         vassert(r >= 0 && r < 8);         vex_printf("%s", ireg32_names[r]);         return;      case HRcFlt64:         r = hregNumber(reg);         vassert(r >= 0 && r < 6);         vex_printf("%%fake%d", r);         return;      case HRcVec128:         r = hregNumber(reg);         vassert(r >= 0 && r < 8);         vex_printf("%%xmm%d", r);         return;      default:         vpanic("ppHRegX86");   }}HReg hregX86_EAX ( void ) { return mkHReg(0, HRcInt32, False); }HReg hregX86_ECX ( void ) { return mkHReg(1, HRcInt32, False); }HReg hregX86_EDX ( void ) { return mkHReg(2, HRcInt32, False); }HReg hregX86_EBX ( void ) { return mkHReg(3, HRcInt32, False); }HReg hregX86_ESP ( void ) { return mkHReg(4, HRcInt32, False); }HReg hregX86_EBP ( void ) { return mkHReg(5, HRcInt32, False); }HReg hregX86_ESI ( void ) { return mkHReg(6, HRcInt32, False); }HReg hregX86_EDI ( void ) { return mkHReg(7, HRcInt32, False); }HReg hregX86_FAKE0 ( void ) { return mkHReg(0, HRcFlt64, False); }HReg hregX86_FAKE1 ( void ) { return mkHReg(1, HRcFlt64, False); }HReg hregX86_FAKE2 ( void ) { return mkHReg(2, HRcFlt64, False); }HReg hregX86_FAKE3 ( void ) { return mkHReg(3, HRcFlt64, False); }HReg hregX86_FAKE4 ( void ) { return mkHReg(4, HRcFlt64, False); }HReg hregX86_FAKE5 ( void ) { return mkHReg(5, HRcFlt64, False); }HReg hregX86_XMM0 ( void ) { return mkHReg(0, HRcVec128, False); }HReg hregX86_XMM1 ( void ) { return mkHReg(1, HRcVec128, False); }HReg hregX86_XMM2 ( void ) { return mkHReg(2, HRcVec128, False); }HReg hregX86_XMM3 ( void ) { return mkHReg(3, HRcVec128, False); }HReg hregX86_XMM4 ( void ) { return mkHReg(4, HRcVec128, False); }HReg hregX86_XMM5 ( void ) { return mkHReg(5, HRcVec128, False); }HReg hregX86_XMM6 ( void ) { return mkHReg(6, HRcVec128, False); }HReg hregX86_XMM7 ( void ) { return mkHReg(7, HRcVec128, False); }void getAllocableRegs_X86 ( Int* nregs, HReg** arr ){   *nregs = 20;   *arr = LibVEX_Alloc(*nregs * sizeof(HReg));   (*arr)[0] = hregX86_EAX();   (*arr)[1] = hregX86_EBX();   (*arr)[2] = hregX86_ECX();   (*arr)[3] = hregX86_EDX();   (*arr)[4] = hregX86_ESI();   (*arr)[5] = hregX86_EDI();   (*arr)[6] = hregX86_FAKE0();   (*arr)[7] = hregX86_FAKE1();   (*arr)[8] = hregX86_FAKE2();   (*arr)[9] = hregX86_FAKE3();   (*arr)[10] = hregX86_FAKE4();   (*arr)[11] = hregX86_FAKE5();   (*arr)[12] = hregX86_XMM0();   (*arr)[13] = hregX86_XMM1();   (*arr)[14] = hregX86_XMM2();   (*arr)[15] = hregX86_XMM3();   (*arr)[16] = hregX86_XMM4();   (*arr)[17] = hregX86_XMM5();   (*arr)[18] = hregX86_XMM6();   (*arr)[19] = hregX86_XMM7();}/* --------- Condition codes, Intel encoding. --------- */HChar* showX86CondCode ( X86CondCode cond ){   switch (cond) {      case Xcc_O:      return "o";      case Xcc_NO:     return "no";      case Xcc_B:      return "b";      case Xcc_NB:     return "nb";      case Xcc_Z:      return "z";      case Xcc_NZ:     return "nz";      case Xcc_BE:     return "be";      case Xcc_NBE:    return "nbe";      case Xcc_S:      return "s";      case Xcc_NS:     return "ns";      case Xcc_P:      return "p";      case Xcc_NP:     return "np";      case Xcc_L:      return "l";      case Xcc_NL:     return "nl";      case Xcc_LE:     return "le";      case Xcc_NLE:    return "nle";      case Xcc_ALWAYS: return "ALWAYS";      default: vpanic("ppX86CondCode");   }}/* --------- X86AMode: memory address expressions. --------- */X86AMode* X86AMode_IR ( UInt imm32, HReg reg ) {   X86AMode* am = LibVEX_Alloc(sizeof(X86AMode));   am->tag = Xam_IR;   am->Xam.IR.imm = imm32;   am->Xam.IR.reg = reg;   return am;}X86AMode* X86AMode_IRRS ( UInt imm32, HReg base, HReg indEx, Int shift ) {   X86AMode* am = LibVEX_Alloc(sizeof(X86AMode));   am->tag = Xam_IRRS;   am->Xam.IRRS.imm = imm32;   am->Xam.IRRS.base = base;   am->Xam.IRRS.index = indEx;   am->Xam.IRRS.shift = shift;   vassert(shift >= 0 && shift <= 3);   return am;}X86AMode* dopyX86AMode ( X86AMode* am ) {   switch (am->tag) {      case Xam_IR:          return X86AMode_IR( am->Xam.IR.imm, am->Xam.IR.reg );      case Xam_IRRS:          return X86AMode_IRRS( am->Xam.IRRS.imm, am->Xam.IRRS.base,                                am->Xam.IRRS.index, am->Xam.IRRS.shift );      default:         vpanic("dopyX86AMode");   }}void ppX86AMode ( X86AMode* am ) {   switch (am->tag) {      case Xam_IR:          if (am->Xam.IR.imm == 0)            vex_printf("(");         else            vex_printf("0x%x(", am->Xam.IR.imm);         ppHRegX86(am->Xam.IR.reg);         vex_printf(")");         return;      case Xam_IRRS:         vex_printf("0x%x(", am->Xam.IRRS.imm);         ppHRegX86(am->Xam.IRRS.base);         vex_printf(",");         ppHRegX86(am->Xam.IRRS.index);         vex_printf(",%d)", 1 << am->Xam.IRRS.shift);         return;      default:         vpanic("ppX86AMode");   }}static void addRegUsage_X86AMode ( HRegUsage* u, X86AMode* am ) {   switch (am->tag) {      case Xam_IR:          addHRegUse(u, HRmRead, am->Xam.IR.reg);         return;      case Xam_IRRS:         addHRegUse(u, HRmRead, am->Xam.IRRS.base);         addHRegUse(u, HRmRead, am->Xam.IRRS.index);         return;      default:         vpanic("addRegUsage_X86AMode");   }}static void mapRegs_X86AMode ( HRegRemap* m, X86AMode* am ) {   switch (am->tag) {      case Xam_IR:          am->Xam.IR.reg = lookupHRegRemap(m, am->Xam.IR.reg);         return;      case Xam_IRRS:         am->Xam.IRRS.base = lookupHRegRemap(m, am->Xam.IRRS.base);         am->Xam.IRRS.index = lookupHRegRemap(m, am->Xam.IRRS.index);         return;      default:         vpanic("mapRegs_X86AMode");   }}/* --------- Operand, which can be reg, immediate or memory. --------- */X86RMI* X86RMI_Imm ( UInt imm32 ) {   X86RMI* op         = LibVEX_Alloc(sizeof(X86RMI));   op->tag            = Xrmi_Imm;   op->Xrmi.Imm.imm32 = imm32;   return op;}X86RMI* X86RMI_Reg ( HReg reg ) {   X86RMI* op       = LibVEX_Alloc(sizeof(X86RMI));   op->tag          = Xrmi_Reg;   op->Xrmi.Reg.reg = reg;   return op;}X86RMI* X86RMI_Mem ( X86AMode* am ) {   X86RMI* op      = LibVEX_Alloc(sizeof(X86RMI));   op->tag         = Xrmi_Mem;   op->Xrmi.Mem.am = am;   return op;}void ppX86RMI ( X86RMI* op ) {   switch (op->tag) {      case Xrmi_Imm:          vex_printf("$0x%x", op->Xrmi.Imm.imm32);         return;      case Xrmi_Reg:          ppHRegX86(op->Xrmi.Reg.reg);         return;      case Xrmi_Mem:          ppX86AMode(op->Xrmi.Mem.am);         return;     default:          vpanic("ppX86RMI");   }}/* An X86RMI can only be used in a "read" context (what would it mean   to write or modify a literal?) and so we enumerate its registers   accordingly. */static void addRegUsage_X86RMI ( HRegUsage* u, X86RMI* op ) {   switch (op->tag) {      case Xrmi_Imm:          return;      case Xrmi_Reg:          addHRegUse(u, HRmRead, op->Xrmi.Reg.reg);         return;      case Xrmi_Mem:          addRegUsage_X86AMode(u, op->Xrmi.Mem.am);         return;      default:          vpanic("addRegUsage_X86RMI");   }}static void mapRegs_X86RMI ( HRegRemap* m, X86RMI* op ) {   switch (op->tag) {      case Xrmi_Imm:          return;      case Xrmi_Reg:          op->Xrmi.Reg.reg = lookupHRegRemap(m, op->Xrmi.Reg.reg);         return;      case Xrmi_Mem:          mapRegs_X86AMode(m, op->Xrmi.Mem.am);         return;      default:          vpanic("mapRegs_X86RMI");   }}/* --------- Operand, which can be reg or immediate only. --------- */X86RI* X86RI_Imm ( UInt imm32 ) {   X86RI* op         = LibVEX_Alloc(sizeof(X86RI));   op->tag           = Xri_Imm;   op->Xri.Imm.imm32 = imm32;   return op;}X86RI* X86RI_Reg ( HReg reg ) {   X86RI* op       = LibVEX_Alloc(sizeof(X86RI));   op->tag         = Xri_Reg;   op->Xri.Reg.reg = reg;   return op;}void ppX86RI ( X86RI* op ) {   switch (op->tag) {      case Xri_Imm:          vex_printf("$0x%x", op->Xri.Imm.imm32);         return;      case Xri_Reg:          ppHRegX86(op->Xri.Reg.reg);         return;     default:          vpanic("ppX86RI");   }}/* An X86RI can only be used in a "read" context (what would it mean   to write or modify a literal?) and so we enumerate its registers   accordingly. */static void addRegUsage_X86RI ( HRegUsage* u, X86RI* op ) {   switch (op->tag) {      case Xri_Imm:          return;      case Xri_Reg:          addHRegUse(u, HRmRead, op->Xri.Reg.reg);         return;      default:          vpanic("addRegUsage_X86RI");   }}static void mapRegs_X86RI ( HRegRemap* m, X86RI* op ) {   switch (op->tag) {      case Xri_Imm:          return;      case Xri_Reg:          op->Xri.Reg.reg = lookupHRegRemap(m, op->Xri.Reg.reg);         return;      default:          vpanic("mapRegs_X86RI");   }}/* --------- Operand, which can be reg or memory only. --------- */X86RM* X86RM_Reg ( HReg reg ) {   X86RM* op       = LibVEX_Alloc(sizeof(X86RM));   op->tag         = Xrm_Reg;   op->Xrm.Reg.reg = reg;   return op;}X86RM* X86RM_Mem ( X86AMode* am ) {   X86RM* op      = LibVEX_Alloc(sizeof(X86RM));   op->tag        = Xrm_Mem;   op->Xrm.Mem.am = am;   return op;}void ppX86RM ( X86RM* op ) {   switch (op->tag) {      case Xrm_Mem:          ppX86AMode(op->Xrm.Mem.am);         return;      case Xrm_Reg:          ppHRegX86(op->Xrm.Reg.reg);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -