⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 isel.c

📁 The Valgrind distribution has multiple tools. The most popular is the memory checking tool (called M
💻 C
📖 第 1 页 / 共 5 页
字号:
/*---------------------------------------------------------------*//*---                                                         ---*//*--- This file (host-x86/isel.c) is                          ---*//*--- Copyright (C) OpenWorks LLP.  All rights reserved.      ---*//*---                                                         ---*//*---------------------------------------------------------------*//*   This file is part of LibVEX, a library for dynamic binary   instrumentation and translation.   Copyright (C) 2004-2006 OpenWorks LLP.  All rights reserved.   This library is made available under a dual licensing scheme.   If you link LibVEX against other code all of which is itself   licensed under the GNU General Public License, version 2 dated June   1991 ("GPL v2"), then you may use LibVEX under the terms of the GPL   v2, as appearing in the file LICENSE.GPL.  If the file LICENSE.GPL   is missing, you can obtain a copy of the GPL v2 from the Free   Software Foundation Inc., 51 Franklin St, Fifth Floor, Boston, MA   02110-1301, USA.   For any other uses of LibVEX, you must first obtain a commercial   license from OpenWorks LLP.  Please contact info@open-works.co.uk   for information about commercial licensing.   This software is provided by OpenWorks LLP "as is" and any express   or implied warranties, including, but not limited to, the implied   warranties of merchantability and fitness for a particular purpose   are disclaimed.  In no event shall OpenWorks LLP be liable for any   direct, indirect, incidental, special, exemplary, or consequential   damages (including, but not limited to, procurement of substitute   goods or services; loss of use, data, or profits; or business   interruption) however caused and on any theory of liability,   whether in contract, strict liability, or tort (including   negligence or otherwise) arising in any way out of the use of this   software, even if advised of the possibility of such damage.   Neither the names of the U.S. Department of Energy nor the   University of California nor the names of its contributors may be   used to endorse or promote products derived from this software   without prior written permission.*/#include "libvex_basictypes.h"#include "libvex_ir.h"#include "libvex.h"#include "ir/irmatch.h"#include "main/vex_util.h"#include "main/vex_globals.h"#include "host-generic/h_generic_regs.h"#include "host-generic/h_generic_simd64.h"#include "host-x86/hdefs.h"/* TODO 21 Apr 2005:   -- (Really an assembler issue) don't emit CMov32 as a cmov      insn, since that's expensive on P4 and conditional branch      is cheaper if (as we expect) the condition is highly predictable   -- preserve xmm registers across function calls (by declaring them      as trashed by call insns)   -- preserve x87 ST stack discipline across function calls.  Sigh.   -- Check doHelperCall: if a call is conditional, we cannot safely      compute any regparm args directly to registers.  Hence, the      fast-regparm marshalling should be restricted to unconditional      calls only.*//*---------------------------------------------------------*//*--- x87 control word stuff                            ---*//*---------------------------------------------------------*//* Vex-generated code expects to run with the FPU set as follows: all   exceptions masked, round-to-nearest, precision = 53 bits.  This   corresponds to a FPU control word value of 0x027F.   Similarly the SSE control word (%mxcsr) should be 0x1F80.   %fpucw and %mxcsr should have these values on entry to   Vex-generated code, and should those values should be   unchanged at exit.*/#define DEFAULT_FPUCW 0x027F/* debugging only, do not use *//* define DEFAULT_FPUCW 0x037F *//*---------------------------------------------------------*//*--- misc helpers                                      ---*//*---------------------------------------------------------*//* These are duplicated in guest-x86/toIR.c */static IRExpr* unop ( IROp op, IRExpr* a ){   return IRExpr_Unop(op, a);}static IRExpr* binop ( IROp op, IRExpr* a1, IRExpr* a2 ){   return IRExpr_Binop(op, a1, a2);}static IRExpr* bind ( Int binder ){   return IRExpr_Binder(binder);}/*---------------------------------------------------------*//*--- ISelEnv                                           ---*//*---------------------------------------------------------*//* This carries around:   - A mapping from IRTemp to IRType, giving the type of any IRTemp we     might encounter.  This is computed before insn selection starts,     and does not change.   - A mapping from IRTemp to HReg.  This tells the insn selector     which virtual register(s) are associated with each IRTemp     temporary.  This is computed before insn selection starts, and     does not change.  We expect this mapping to map precisely the     same set of IRTemps as the type mapping does.        - vregmap   holds the primary register for the IRTemp.        - vregmapHI is only used for 64-bit integer-typed             IRTemps.  It holds the identity of a second             32-bit virtual HReg, which holds the high half             of the value.   - The code array, that is, the insns selected so far.   - A counter, for generating new virtual registers.   - The host subarchitecture we are selecting insns for.       This is set at the start and does not change.   Note, this is all host-independent.  */typedef   struct {      IRTypeEnv*   type_env;      HReg*        vregmap;      HReg*        vregmapHI;      Int          n_vregmap;      HInstrArray* code;      Int          vreg_ctr;      UInt         hwcaps;   }   ISelEnv;static HReg lookupIRTemp ( ISelEnv* env, IRTemp tmp ){   vassert(tmp >= 0);   vassert(tmp < env->n_vregmap);   return env->vregmap[tmp];}static void lookupIRTemp64 ( HReg* vrHI, HReg* vrLO, ISelEnv* env, IRTemp tmp ){   vassert(tmp >= 0);   vassert(tmp < env->n_vregmap);   vassert(env->vregmapHI[tmp] != INVALID_HREG);   *vrLO = env->vregmap[tmp];   *vrHI = env->vregmapHI[tmp];}static void addInstr ( ISelEnv* env, X86Instr* instr ){   addHInstr(env->code, instr);   if (vex_traceflags & VEX_TRACE_VCODE) {      ppX86Instr(instr, False);      vex_printf("\n");   }}static HReg newVRegI ( ISelEnv* env ){   HReg reg = mkHReg(env->vreg_ctr, HRcInt32, True/*virtual reg*/);   env->vreg_ctr++;   return reg;}static HReg newVRegF ( ISelEnv* env ){   HReg reg = mkHReg(env->vreg_ctr, HRcFlt64, True/*virtual reg*/);   env->vreg_ctr++;   return reg;}static HReg newVRegV ( ISelEnv* env ){   HReg reg = mkHReg(env->vreg_ctr, HRcVec128, True/*virtual reg*/);   env->vreg_ctr++;   return reg;}/*---------------------------------------------------------*//*--- ISEL: Forward declarations                        ---*//*---------------------------------------------------------*//* These are organised as iselXXX and iselXXX_wrk pairs.  The   iselXXX_wrk do the real work, but are not to be called directly.   For each XXX, iselXXX calls its iselXXX_wrk counterpart, then   checks that all returned registers are virtual.  You should not   call the _wrk version directly.*/static X86RMI*     iselIntExpr_RMI_wrk ( ISelEnv* env, IRExpr* e );static X86RMI*     iselIntExpr_RMI     ( ISelEnv* env, IRExpr* e );static X86RI*      iselIntExpr_RI_wrk ( ISelEnv* env, IRExpr* e );static X86RI*      iselIntExpr_RI     ( ISelEnv* env, IRExpr* e );static X86RM*      iselIntExpr_RM_wrk ( ISelEnv* env, IRExpr* e );static X86RM*      iselIntExpr_RM     ( ISelEnv* env, IRExpr* e );static HReg        iselIntExpr_R_wrk ( ISelEnv* env, IRExpr* e );static HReg        iselIntExpr_R     ( ISelEnv* env, IRExpr* e );static X86AMode*   iselIntExpr_AMode_wrk ( ISelEnv* env, IRExpr* e );static X86AMode*   iselIntExpr_AMode     ( ISelEnv* env, IRExpr* e );static void        iselInt64Expr_wrk ( HReg* rHi, HReg* rLo,                                        ISelEnv* env, IRExpr* e );static void        iselInt64Expr     ( HReg* rHi, HReg* rLo,                                        ISelEnv* env, IRExpr* e );static X86CondCode iselCondCode_wrk ( ISelEnv* env, IRExpr* e );static X86CondCode iselCondCode     ( ISelEnv* env, IRExpr* e );static HReg        iselDblExpr_wrk ( ISelEnv* env, IRExpr* e );static HReg        iselDblExpr     ( ISelEnv* env, IRExpr* e );static HReg        iselFltExpr_wrk ( ISelEnv* env, IRExpr* e );static HReg        iselFltExpr     ( ISelEnv* env, IRExpr* e );static HReg        iselVecExpr_wrk ( ISelEnv* env, IRExpr* e );static HReg        iselVecExpr     ( ISelEnv* env, IRExpr* e );/*---------------------------------------------------------*//*--- ISEL: Misc helpers                                ---*//*---------------------------------------------------------*//* Make a int reg-reg move. */static X86Instr* mk_iMOVsd_RR ( HReg src, HReg dst ){   vassert(hregClass(src) == HRcInt32);   vassert(hregClass(dst) == HRcInt32);   return X86Instr_Alu32R(Xalu_MOV, X86RMI_Reg(src), dst);}/* Make a vector reg-reg move. */static X86Instr* mk_vMOVsd_RR ( HReg src, HReg dst ){   vassert(hregClass(src) == HRcVec128);   vassert(hregClass(dst) == HRcVec128);   return X86Instr_SseReRg(Xsse_MOV, src, dst);}/* Advance/retreat %esp by n. */static void add_to_esp ( ISelEnv* env, Int n ){   vassert(n > 0 && n < 256 && (n%4) == 0);   addInstr(env,             X86Instr_Alu32R(Xalu_ADD, X86RMI_Imm(n), hregX86_ESP()));}static void sub_from_esp ( ISelEnv* env, Int n ){   vassert(n > 0 && n < 256 && (n%4) == 0);   addInstr(env,             X86Instr_Alu32R(Xalu_SUB, X86RMI_Imm(n), hregX86_ESP()));}/* Given an amode, return one which references 4 bytes further   along. */static X86AMode* advance4 ( X86AMode* am ){   X86AMode* am4 = dopyX86AMode(am);   switch (am4->tag) {      case Xam_IRRS:         am4->Xam.IRRS.imm += 4; break;      case Xam_IR:         am4->Xam.IR.imm += 4; break;      default:         vpanic("advance4(x86,host)");   }   return am4;}/* Push an arg onto the host stack, in preparation for a call to a   helper function of some kind.  Returns the number of 32-bit words   pushed. */static Int pushArg ( ISelEnv* env, IRExpr* arg ){   IRType arg_ty = typeOfIRExpr(env->type_env, arg);   if (arg_ty == Ity_I32) {      addInstr(env, X86Instr_Push(iselIntExpr_RMI(env, arg)));      return 1;   } else    if (arg_ty == Ity_I64) {      HReg rHi, rLo;      iselInt64Expr(&rHi, &rLo, env, arg);      addInstr(env, X86Instr_Push(X86RMI_Reg(rHi)));      addInstr(env, X86Instr_Push(X86RMI_Reg(rLo)));      return 2;   }   ppIRExpr(arg);   vpanic("pushArg(x86): can't handle arg of this type");}/* Complete the call to a helper function, by calling the    helper and clearing the args off the stack. */static void callHelperAndClearArgs ( ISelEnv* env, X86CondCode cc,                               IRCallee* cee, Int n_arg_ws ){   /* Complication.  Need to decide which reg to use as the fn address      pointer, in a way that doesn't trash regparm-passed      parameters. */   vassert(sizeof(void*) == 4);   addInstr(env, X86Instr_Call( cc, toUInt(Ptr_to_ULong(cee->addr)),                                    cee->regparms));   if (n_arg_ws > 0)      add_to_esp(env, 4*n_arg_ws);}/* Used only in doHelperCall.  See big comment in doHelperCall re   handling of regparm args.  This function figures out whether   evaluation of an expression might require use of a fixed register.   If in doubt return True (safe but suboptimal).  */staticBool mightRequireFixedRegs ( IRExpr* e ){   switch (e->tag) {      case Iex_Tmp: case Iex_Const: case Iex_Get:          return False;      default:         return True;   }}/* Do a complete function call.  guard is a Ity_Bit expression   indicating whether or not the call happens.  If guard==NULL, the   call is unconditional. */staticvoid doHelperCall ( ISelEnv* env,                     Bool passBBP,                     IRExpr* guard, IRCallee* cee, IRExpr** args ){   X86CondCode cc;   HReg        argregs[3];   HReg        tmpregs[3];   Bool        danger;   Int         not_done_yet, n_args, n_arg_ws, stack_limit,                i, argreg, argregX;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -