📄 main.cpp
字号:
#include "MyMatrix.h"
#include <vector>
//principal components analysis
int main()
{
int sampleNum=9,variableNum=6;
int i,j;
const double contributionRate=0.85;
double originalSamples[MAXSIZE][MAXSIZE]={
{11.5,9.0,7.5,9.1,11.6,13.0,11.6,10.7,11.1},
{95.3,97.7,110.7,89.0,88.0,87.7,79.7,119.3,87.7},
{26.4,30.8,39.7,35.4,29.3,24.6,25.6,29.9,32.2},
{39.2,46.8,39.1,35.3,37.0,44.8,43.7,38.8,35.6},
{109,107,108,110,109,109,109,108},
{6.0/2.0,6.0/6.0,6.0/3.0,6.0/2.0,6.0/7.0,6.0/5.0,6.0/5.0,6.0/3.0}
};
double a[MAXSIZE][MAXSIZE]={
{1.0,-0.4933,-0.8982,0.1448,0.8127,0.4397},
{-0.4933,1.0,0.4369,-0.0853,-0.2979,-0.1263},
{-0.8982,0.4369,1.0,-0.4709,-0.6883,-0.4925},
{0.1448,-0.0853,-0.4709,1.0,-0.1653,0.5684},
{0.8127,-0.2979,-0.6883,-0.1653,1.0,0.3823},
{0.4397,-0.1263,-0.4925,0.5684,0.3823,1.0}
};
double s[MAXSIZE][MAXSIZE]={
{2,-1,0},
{-1,2,-1},
{0,-1,2}
};
MyMatrix Sa(s,3,3),Z;
Sa.JacobiMethod(Z).Display();
Z.Display();
MyMatrix originalSampleMatrix(originalSamples,variableNum,sampleNum);
//计算相关阵时无需对样本进行标准化
MyMatrix corelationMatrix=originalSampleMatrix.GetCorelationMatrix();
// MyMatrix corelationMatrix(a,variableNum,variableNum);
cout<<"相关阵:"<<endl;
corelationMatrix.Display();
//计算主成分得分值时需要使用标准化后的值
MyMatrix standarlizedSampleMatrix=originalSampleMatrix.StandarlizeVectors();
//使用雅克比法计算特征值及对应特征向量
MyMatrix eigenValueMatrix,eigenVectors;
eigenValueMatrix=corelationMatrix.JacobiMethod(eigenVectors);
//提取特征值至数组eigenValues
double eigenValues[MAXSIZE];
for(i=0;i<variableNum;i++){
eigenValues[i]=eigenValueMatrix.GetElement(i,i);
}
//从大到小对特征值进行冒泡排序,同时相应调整特征向量顺序
for(i=0;i<eigenValueMatrix.GetCol();i++){
for(j=0;j<eigenValueMatrix.GetCol();j++){
if(eigenValues[i]>eigenValues[j]){
double t=eigenValues[i];
eigenValues[i]=eigenValues[j];
eigenValues[j]=t;
eigenVectors.SwapColumn(i,j);
}
}
}
cout<<endl<<"样本相关阵的特征值及特征向量:"<<endl;
MyMatrix t(NULL,1,variableNum);
for(i=0;i<variableNum;i++)
t.SetElement(0,i,eigenValues[i]);
t.Display();
cout<<endl;
eigenVectors.Display();
double sum=0,rate=0;
for(i=0;i<variableNum;i++){
sum+=eigenValues[i];
}
for(i=0;i<variableNum;i++){
rate+=eigenValues[i]/sum;
if(rate>contributionRate){
cout<<"取前"<<(i+1)<<"个主成分即可"<<endl;
break;
}
}
//计算得分值,注意样本的指标值是用标准化后的值
MyMatrix scoreMatrix=eigenVectors*standarlizedSampleMatrix;
scoreMatrix=scoreMatrix.TransposeMatrix();
cout<<"各样本的主成分得分值:"<<endl;
scoreMatrix.Display();
//MyMatrix A(a,6,6);
//cout<<"Using Jacobi method to get all eigenvalues of matrix C ,"<<endl
// <<"diagonal elements of the showed matrix are eigenvalues"<<endl;
//MyMatrix eigenVectors;
//MyMatrix C=A.JacobiMethod(eigenVectors);
//C.Display();
////eigenVectors.Display();
//double eigenValues[MAXSIZE];
//for(int i=0;i<C.GetCol();i++){
// eigenValues[i]=C.GetElement(i,i);
//}
//for(int i=0;i<C.GetCol();i++){
// for(int j=0;j<C.GetCol();j++){
// if(eigenValues[i]>eigenValues[j]){
// double t=eigenValues[i];
// eigenValues[i]=eigenValues[j];
// eigenValues[j]=t;
// eigenVectors.SwapColumn(i,j);
// }
// }
//}
//MyMatrix t(NULL,1,C.GetCol());
//for(int i=0;i<C.GetCol();i++)
// t.SetElement(0,i,eigenValues[i]);
//t.Display();
//eigenVectors.Display();
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -