📄 ldpc_decode.m
字号:
function [x_hat, success, k] = ldpc_decode(f,H,qq)
% decoding of LDPC over GFqq, qq = 2,4,8,16,32,64,128 and 256
% as in Comm. Letters by Davey&MacKay June 1998 with e few modifications.
% For notations see the same reference.
% outputs the estimate "x_hat" of the ENCODED sequence for
% the received vector with channel likelihoods "f".
% "f" ([2^qq][n]) stores the likelihoods for "n" symbols in natural
% ordering. E.g., y(3,5) is the probability of 5-th symbol is equal to "2".
% "H" is the parity check matrix. Success==1 signals
% successful decoding. Maximum number of iterations is set to 100.
% k returns number of iterations until convergence.
%
% Examples:
% We assume G is systematic G=[A|I] and G*H'=0 over GFq
% Binary case
% sigma = 1; % AWGN noise deviation
% x = (sign(randn(1,size(G,1)))+1)/2; % random bits
% y = mod(x*G,2); % encoding
% z = 2*y-1; % BPSK modulation
% z=z + sigma*randn(1,size(G,2)); % AWGN transmission
%
% f1=1./(1+exp(-2*z/sigma^2)); % likelihoods
% f1 = (f1(:))'; % make it a row vector
% f0=1-f1;
% [z_hat, success, k] = ldpc_decode([f0;f1],H,2);
% x_hat = z_hat(size(G,2)+1-size(G,1):size(G,2));
% x_hat = x_hat';
%
% Nonbinary case
% sigma = 1; % AWGN noise deviation
% q = 4; % Field parameter
% nbits = log2(q); % bits per symbol
% h = ldpc_generate(400,600,2.5,q,123); % Generate H
% [H,G] = ldpc_h2g(h,q); % find systematic G and modify H
% x = floor(rand(1,size(G,1))*q); % random symbols
% y = ldpc_encode(x,G,q); % encoding
% yb = (fliplr(de2bi(y,nbits)))'; % convert total index to binary format
% yb = yb(:); % make a vector
% zb = 2*yb-1; % BPSK modulation
% zb=zb + sigma*randn(size(zb)); % AWGN transmission
%
% f1=1./(1+exp(-2*zb/sigma^2)); % likelihoods for bits
% f1 = f1(:); % make it a vector
% f1 = reshape(f1,nbits,length(y)); % reshape for finding priors on symbols
% f0=1-f1;
% junk = ones(q,length(y)); % this is a placeholder in the next function
% [v0, v1, pp] = bits_smbl_msg(f0,f1,junk);
% [z_hat, success, k] = ldpc_decode(pp,H,q);
% x_hat = z_hat(size(G,2)+1-size(G,1):size(G,2));
% x_hat = x_hat';
% Copyright (c) 1999 by Igor Kozintsev igor@ifp.uiuc.edu
% $Revision: 1.2 $ $Date: 1999/11/23 $
% fixed high-SNR decoding
% works for GFq, q= 2^m now
if qq==2 % binary case first, just use the old code
[m,n] = size(H); if m>n, H=H'; [m,n] = size(H); end
if ~issparse(H) % make H sparse if it is not sparse yet
[ii,jj,sH] = find(H);
H = sparse(ii,jj,sH,m,n);
end
f0 = f(1,:); % prob of 0
f1 = f(2,:);
%initialization
[ii,jj,sH] = find(H); % subscript index to nonzero elements of H
indx = sub2ind(size(H),ii,jj); % linear index to nonzero elements of H
q0 = H * spdiags(f0(:),0,n,n);
sq0 = full(q0(indx));
sff0 = sq0;
q1 = H * spdiags(f1(:),0,n,n);
sq1 = full(q1(indx));
sff1 = sq1;
%iterations
k=0;
success = 0;
max_iter = 100;
while ((success == 0) & (k < max_iter)),
k = k+1;
%horizontal step
sdq = sq0 - sq1; sdq(find(sdq==0)) = 1e-20; % if f0 = f1 = .5
dq = sparse(ii,jj,sdq,m,n);
Pdq_v = full(real(exp(sum(spfun('log',dq),2)))); % this is ugly but works :)
Pdq = spdiags(Pdq_v(:),0,m,m) * H;
sPdq = full(Pdq(indx));
sr0 = (1+sPdq./sdq)./2; sr0(find(abs(sr0) < 1e-20)) = 1e-20;
sr1 = (1-sPdq./sdq)./2; sr1(find(abs(sr1) < 1e-20)) = 1e-20;
r0 = sparse(ii,jj,sr0,m,n);
r1 = sparse(ii,jj,sr1,m,n);
%vertical step
Pr0_v = full(real(exp(sum(spfun('log',r0),1))));
Pr0 = H * spdiags(Pr0_v(:),0,n,n);
sPr0 = full(Pr0(indx));
Q0 = full(sum(sparse(ii,jj,sPr0.*sff0,m,n),1))';
sq0 = sPr0.*sff0./sr0;
Pr1_v = full(real(exp(sum(spfun('log',r1),1))));
Pr1 = H * spdiags(Pr1_v(:),0,n,n);
sPr1 = full(Pr1(indx));
Q1 = full(sum(sparse(ii,jj,sPr1.*sff1,m,n),1))';
sq1 = sPr1.*sff1./sr1;
sqq = sq0+sq1;
sq0 = sq0./sqq;
sq1 = sq1./sqq;
%tentative decoding
QQ = Q0+Q1;
Q0 = Q0./QQ;
Q1 = Q1./QQ;
x_hat = (sign(Q1-Q0)+1)/2;
if rem(H*x_hat,2) == 0, success = 1; end
end
% end of binary case
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
else % GFq, nonbinary
% our strategy is "divide and concur" - we partition H into several matrices with
% the fixed number of variables per function in each of them and the other way around
[m,n] = size(H); if m>n, H=H'; [m,n] = size(H); end
if ~issparse(H) % make H sparse if it is not sparse yet
[ii,jj,sH] = find(H);
H = sparse(ii,jj,sH,m,n);
end
%initialization
[ii,jj,sH] = find(H); % subscript index to nonzero elements of H
W = sparse(ii,jj,ones(size(ii)),m,n); %indicator function
nvars = full(sum(W,2)); % number of variables participating each check function
minvars = min(nvars); % min number of variables in a function
maxvars = max(nvars); % max number of variables in a function
nfuns = full(sum(W,1)); % number of functions per variable
minfuns = min(nfuns); % min number of functions per variable
maxfuns = max(nfuns); % max number of functions per variable
% the following will be used in solving linear equations over GFq
M=log2(qq); % GFq exponent
[tuple power] = gftuple([-1:2^M-2]', M, 2);
alpha = tuple * 2.^[0 : M - 1]';
beta(alpha + 1) = 0 : 2^M - 1;
% create cell arays which contain sparse matrices with fixed # of variables in rows
for nnvars = minvars:maxvars
tmp = zeros(size(H));
rows = find(nvars == nnvars); %rows of H having 'nnvars' variables
tmp(rows,:) = H(rows,:);
[jjj,iii,ssH] = find(tmp');
iir{nnvars} = reshape(iii,nnvars,length(iii)/nnvars)';
jjr{nnvars} = reshape(jjj,nnvars,length(jjj)/nnvars)';
Hr{nnvars} = reshape(ssH,nnvars,length(ssH)/nnvars)';% separate parity matrices
q{nnvars} = reshape(f(:,jjr{nnvars})',[size(jjr{nnvars}),qq]); %initialize to channel likelihoods
% Prestore valid configurations in array X
if(~isempty(Hr{nnvars})) % make sure the are functions for this case
Hleft = Hr{nnvars}(:,1); % will solve for these varibles
Hright = Hr{nnvars}(:,2:nnvars); % while setting these arbitrary
for i=0:(qq^(nnvars-1)-1) % there are qq^(nnvars-1) different combinations
xr = (fliplr(de2bi(i,nnvars-1,qq))); % current nonzero combination
% find the remaining variable to satisfy the parity checks
right_part = ones(size(Hleft))*(-Inf); %exponent over GFq
for j=1:(nnvars-1) % multiply each column of Hright by the symbol from x and accumulate
rr1 = power(beta(xr(j)+1)+1); % get expon. representation of xr(i)
rr2 = power(beta(Hright(:,j)+1)+1);% same for the column of Hright
rr3 = gfmul(rr1,rr2,tuple)'; % this is exponential representation of the product
right_part = gfadd(right_part,rr3,tuple);
end
left_part = mod((qq-1)+ right_part - power(beta(Hleft+1)+1),qq-1);
xl=zeros(size(left_part));
nzindx = find(isfinite(left_part));
xl(nzindx) = alpha(left_part(nzindx)+2);
x = [xl repmat(xr,[length(xl),1])]; %this is a valid configuration
X{nnvars}(i+1,:,:) = x;
end
end
end
% create cell arays which contain sparse matrices with fixed # of functions in columns
for nnfuns = minfuns:maxfuns
tmp = zeros(size(H));
cols = find(nfuns == nnfuns); %rows of H having 'nnvars' variables
tmp(:,cols) = H(:,cols);
[iii,jjj,ssH] = find(tmp);
iic{nnfuns} = reshape(iii,nnfuns,length(iii)/nnfuns);
jjc{nnfuns} = reshape(jjj,nnfuns,length(jjj)/nnfuns);
Hc{nnfuns} = reshape(ssH,nnfuns,length(ssH)/nnfuns);% separate parity matrices
ff{nnfuns} = reshape(f(:,jjc{nnfuns})',[size(jjc{nnfuns}),qq]); % this will not change
end
%iterations
k=0;
success = 0;
max_iter = 100;
while ((success == 0) & (k < max_iter)),
k = k+1
buffer = zeros([size(H),qq]);
% Horizontal step - forming messages to variables from the parity check functions
% each Hr is processed separately
for nnvars = minvars:maxvars
if(~isempty(Hr{nnvars})) % make sure the are functions for this case
result = zeros([size(Hr{nnvars}) qq]); % will store the intermediate result
for i=0:(qq^(nnvars-1)-1) % there are qq^(nnvars-1) different combinations
x = squeeze(X{nnvars}(i+1,:,:)); %lookup a valid configuration
%calculate products
a = cumsum(ones(size(x)),1);
b = cumsum(ones(size(x)),2);
idx = sub2ind(size(q{nnvars}),a,b,x+1); %index of current configuration in 3D
pp = repmat(prod(q{nnvars}(idx),2),[1,size(x,2)]); %product for this configuration
denom = q{nnvars}(idx);
denom(find(denom==0)) = realmin;
result(idx) = result(idx) + pp./denom;
end
% update global distribution
a = repmat(iir{nnvars},[1,1,qq]);
b = repmat(jjr{nnvars},[1,1,qq]);
c = permute(repmat((1:qq)',[1 size(a,1) size(a,2)]),[2 3 1]);
gidx = sub2ind(size(buffer),a,b,c);
buffer(gidx) = result;
end
end
% initialize r from the global data in buffer
for nnfuns = minfuns:maxfuns
a = repmat(iic{nnfuns},[1,1,qq]);
b = repmat(jjc{nnfuns},[1,1,qq]);
c = permute(repmat((1:qq)',[1 size(a,1) size(a,2)]),[2 3 1]);
gidx = sub2ind(size(buffer),a,b,c);
r{nnfuns} = buffer(gidx);
end
%vertical step
buffer = zeros([size(H),qq]);
QQ = zeros(qq,size(H,2));
for nnfuns = minfuns:maxfuns
if(~isempty(Hc{nnfuns})) % make sure the are variables for this case
%calculate products
pp = repmat( prod ( r{nnfuns},1),[size(r{nnfuns},1),1]).*ff{nnfuns}; %product for this configuration
denom = r{nnfuns};
denom(find(denom==0)) = realmin;
result = pp./denom;
result = result./repmat((sum(result,3)),[1,1,qq]); %normalize to distribution
% update global distribution
a = repmat(iic{nnfuns},[1,1,qq]);
b = repmat(jjc{nnfuns},[1,1,qq]);
c = permute(repmat((1:qq)',[1 size(a,1) size(a,2)]),[2 3 1]);
gidx = sub2ind(size(buffer),a,b,c);
buffer(gidx) = result;
Q{nnfuns} = pp.*ff{nnfuns};
b = repmat(jjc{nnfuns}(1,:),[qq,1]);
c = repmat((1:qq)',[1, size(b,2)]);
qidx = sub2ind(size(QQ),c,b);
QQ(qidx) = squeeze(Q{nnfuns}(1,:,:))';
end
end
% initialize q from the global data in buffer
for nnvars = minvars:maxvars
a = repmat(iir{nnvars},[1,1,qq]);
b = repmat(jjr{nnvars},[1,1,qq]);
c = permute(repmat((1:qq)',[1 size(a,1) size(a,2)]),[2 3 1]);
gidx = sub2ind(size(buffer),a,b,c);
q{nnvars} = buffer(gidx);
end
%tentative decoding
QQ = QQ ./ repmat(sum(QQ,1),[qq 1]); %normalize - can be used as soft outputs
[xi xj sx] = find(QQ == repmat(max(QQ),[size(QQ,1),1]));
x_hat = xi-1;
if ldpc_encode(x_hat,H',qq) == 0, success = 1; end
end
end % end of nonbinary case
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -