⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ldpc_decode.m

📁 LDPC编码的GFQ程序源代码
💻 M
字号:
function [x_hat, success, k] = ldpc_decode(f,H,qq)
% decoding of LDPC over GFqq, qq = 2,4,8,16,32,64,128 and 256
% as in Comm. Letters by Davey&MacKay June 1998 with e few modifications.
% For notations see the same reference.
% outputs the estimate "x_hat" of the ENCODED sequence for
% the received vector with channel likelihoods "f".
% "f" ([2^qq][n]) stores the likelihoods for "n" symbols in natural 
% ordering. E.g., y(3,5) is the probability of 5-th symbol is equal to "2".
% "H" is the parity check matrix. Success==1 signals
% successful decoding. Maximum number of iterations is set to 100.
% k returns number of iterations until convergence.
%
% Examples:
% We assume G is systematic G=[A|I] and G*H'=0 over GFq
% Binary case
%         sigma = 1;                          % AWGN noise deviation
%         x = (sign(randn(1,size(G,1)))+1)/2; % random bits
%         y = mod(x*G,2);                     % encoding 
%         z = 2*y-1;                          % BPSK modulation
%         z=z + sigma*randn(1,size(G,2));     % AWGN transmission
%
%         f1=1./(1+exp(-2*z/sigma^2));        % likelihoods
%         f1 = (f1(:))';                      % make it a row vector
%         f0=1-f1;
%         [z_hat, success, k] = ldpc_decode([f0;f1],H,2);
%         x_hat = z_hat(size(G,2)+1-size(G,1):size(G,2));
%         x_hat = x_hat'; 
%
% Nonbinary case
%         sigma = 1;                          % AWGN noise deviation
%         q = 4;                              % Field parameter
%         nbits = log2(q);                    % bits per symbol
%         h = ldpc_generate(400,600,2.5,q,123); % Generate H
%         [H,G] = ldpc_h2g(h,q);              % find systematic G and modify H
%         x = floor(rand(1,size(G,1))*q);     % random symbols
%         y = ldpc_encode(x,G,q);             % encoding 
%         yb = (fliplr(de2bi(y,nbits)))';     % convert total index to binary format
%         yb = yb(:);                         % make a vector
%         zb = 2*yb-1;                        % BPSK modulation
%         zb=zb + sigma*randn(size(zb));      % AWGN transmission
%
%         f1=1./(1+exp(-2*zb/sigma^2));        % likelihoods for bits
%         f1 = f1(:);                         % make it a vector
%         f1 = reshape(f1,nbits,length(y));   % reshape for finding priors on symbols                    
%         f0=1-f1;
%         junk = ones(q,length(y));           % this is a placeholder in the next function
%         [v0, v1, pp] = bits_smbl_msg(f0,f1,junk);
%         [z_hat, success, k] = ldpc_decode(pp,H,q);
%         x_hat = z_hat(size(G,2)+1-size(G,1):size(G,2));
%         x_hat = x_hat'; 


%   Copyright (c) 1999 by Igor Kozintsev igor@ifp.uiuc.edu
%   $Revision: 1.2 $  $Date: 1999/11/23 $
%   fixed high-SNR decoding
%   works for GFq, q= 2^m now

if qq==2 % binary case first, just use the old code
   
   [m,n] = size(H); if m>n, H=H'; [m,n] = size(H); end
   if ~issparse(H) % make H sparse if it is not sparse yet
      [ii,jj,sH] = find(H);
      H = sparse(ii,jj,sH,m,n);
   end
   
   f0 = f(1,:); % prob of 0
   f1 = f(2,:);
   
   %initialization
   [ii,jj,sH] = find(H);          % subscript index to nonzero elements of H 
   indx = sub2ind(size(H),ii,jj); % linear index to nonzero elements of H
   q0 = H * spdiags(f0(:),0,n,n);
   sq0 = full(q0(indx)); 
   sff0 = sq0;

   q1 = H * spdiags(f1(:),0,n,n); 
   sq1 = full(q1(indx));
   sff1 = sq1;

   %iterations
   k=0;
   success = 0;
   max_iter = 100;
   while ((success == 0) & (k < max_iter)),
      k = k+1;
   
      %horizontal step
      sdq = sq0 - sq1; sdq(find(sdq==0)) = 1e-20; % if   f0 = f1 = .5
      dq = sparse(ii,jj,sdq,m,n);
      Pdq_v = full(real(exp(sum(spfun('log',dq),2)))); % this is ugly but works :)
      Pdq = spdiags(Pdq_v(:),0,m,m) * H;
      sPdq = full(Pdq(indx));
      sr0 = (1+sPdq./sdq)./2; sr0(find(abs(sr0) < 1e-20)) = 1e-20;
      sr1 = (1-sPdq./sdq)./2; sr1(find(abs(sr1) < 1e-20)) = 1e-20;
      r0 = sparse(ii,jj,sr0,m,n);
      r1 = sparse(ii,jj,sr1,m,n);
   
      %vertical step
      Pr0_v = full(real(exp(sum(spfun('log',r0),1))));
      Pr0 = H * spdiags(Pr0_v(:),0,n,n);
      sPr0 = full(Pr0(indx));
      Q0 = full(sum(sparse(ii,jj,sPr0.*sff0,m,n),1))';
      sq0 = sPr0.*sff0./sr0;
   
      Pr1_v = full(real(exp(sum(spfun('log',r1),1))));
      Pr1 = H * spdiags(Pr1_v(:),0,n,n);
      sPr1 = full(Pr1(indx)); 
      Q1 = full(sum(sparse(ii,jj,sPr1.*sff1,m,n),1))';
      sq1 = sPr1.*sff1./sr1;
   
      sqq = sq0+sq1;
      sq0 = sq0./sqq;
      sq1 = sq1./sqq;
   
      %tentative decoding
      QQ = Q0+Q1;
      Q0 = Q0./QQ;
      Q1 = Q1./QQ;
   
      x_hat = (sign(Q1-Q0)+1)/2;
      if rem(H*x_hat,2) == 0, success = 1; end
   end
   % end of binary case

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

else % GFq, nonbinary  
   % our strategy is "divide and concur" - we partition H into several matrices with
   % the fixed number of variables per function in each of them and the other way around
   
   [m,n] = size(H); if m>n, H=H'; [m,n] = size(H); end
   if ~issparse(H) % make H sparse if it is not sparse yet
      [ii,jj,sH] = find(H);
      H = sparse(ii,jj,sH,m,n);
   end
   
   %initialization
   [ii,jj,sH] = find(H);          % subscript index to nonzero elements of H 
   W = sparse(ii,jj,ones(size(ii)),m,n); %indicator function
   nvars = full(sum(W,2));        % number of variables participating each check function
   minvars = min(nvars);          % min number of variables in a function
   maxvars = max(nvars);          % max number of variables in a function
   
   nfuns = full(sum(W,1));        % number of functions per variable
   minfuns = min(nfuns);          % min number of functions per variable
   maxfuns = max(nfuns);          % max number of functions per variable
   
   % the following will be used in solving linear equations over GFq
   M=log2(qq); % GFq exponent
   [tuple power] = gftuple([-1:2^M-2]', M, 2); 
   alpha = tuple * 2.^[0 : M - 1]';
   beta(alpha + 1) = 0 : 2^M - 1;


   % create cell arays which contain sparse matrices with fixed # of variables in rows
   for nnvars = minvars:maxvars
      tmp = zeros(size(H));
      rows = find(nvars == nnvars); %rows of H having 'nnvars' variables
      tmp(rows,:) = H(rows,:);
      [jjj,iii,ssH] = find(tmp'); 
      iir{nnvars} = reshape(iii,nnvars,length(iii)/nnvars)';
      jjr{nnvars} = reshape(jjj,nnvars,length(jjj)/nnvars)';
      Hr{nnvars} = reshape(ssH,nnvars,length(ssH)/nnvars)';% separate parity matrices
      q{nnvars} = reshape(f(:,jjr{nnvars})',[size(jjr{nnvars}),qq]); %initialize to channel likelihoods
      
      % Prestore valid configurations in array X
      if(~isempty(Hr{nnvars})) % make sure the are functions for this case
         Hleft = Hr{nnvars}(:,1);         % will solve for these varibles
         Hright = Hr{nnvars}(:,2:nnvars); % while setting these arbitrary
         for i=0:(qq^(nnvars-1)-1)  % there are qq^(nnvars-1) different combinations
            xr = (fliplr(de2bi(i,nnvars-1,qq))); % current nonzero combination 
             
            % find the remaining variable to satisfy the parity checks
            right_part = ones(size(Hleft))*(-Inf); %exponent over GFq
            for j=1:(nnvars-1) % multiply each column of Hright by the symbol from x and accumulate
               rr1 = power(beta(xr(j)+1)+1);      % get expon. representation of xr(i)
               rr2 = power(beta(Hright(:,j)+1)+1);% same for the column of Hright
               rr3 = gfmul(rr1,rr2,tuple)'; % this is exponential representation of the product
               right_part = gfadd(right_part,rr3,tuple);
            end
            left_part = mod((qq-1)+ right_part - power(beta(Hleft+1)+1),qq-1);
            xl=zeros(size(left_part));
            nzindx = find(isfinite(left_part));
            xl(nzindx) = alpha(left_part(nzindx)+2);
            x = [xl repmat(xr,[length(xl),1])]; %this is a valid configuration
            X{nnvars}(i+1,:,:) = x;
         end
      end
      
      
   end
   
   % create cell arays which contain sparse matrices with fixed # of functions in columns
   for nnfuns = minfuns:maxfuns
      tmp = zeros(size(H));
      cols = find(nfuns == nnfuns); %rows of H having 'nnvars' variables
      tmp(:,cols) = H(:,cols);
      [iii,jjj,ssH] = find(tmp); 
      iic{nnfuns} = reshape(iii,nnfuns,length(iii)/nnfuns);
      jjc{nnfuns} = reshape(jjj,nnfuns,length(jjj)/nnfuns);
      Hc{nnfuns} = reshape(ssH,nnfuns,length(ssH)/nnfuns);% separate parity matrices
      ff{nnfuns} = reshape(f(:,jjc{nnfuns})',[size(jjc{nnfuns}),qq]); %  this will not change
   end

   %iterations
   k=0;
   success = 0;
   max_iter = 100;
   while ((success == 0) & (k < max_iter)),
      k = k+1
      
      buffer = zeros([size(H),qq]);
      
      % Horizontal step - forming messages to variables from the parity check functions
      % each Hr is processed separately
      for nnvars = minvars:maxvars
         if(~isempty(Hr{nnvars})) % make sure the are functions for this case
         result = zeros([size(Hr{nnvars}) qq]); % will store the intermediate result
         for i=0:(qq^(nnvars-1)-1)  % there are qq^(nnvars-1) different combinations
               x = squeeze(X{nnvars}(i+1,:,:)); %lookup a valid configuration
               
               %calculate products
               a = cumsum(ones(size(x)),1);
               b = cumsum(ones(size(x)),2);
               idx = sub2ind(size(q{nnvars}),a,b,x+1); %index of current configuration in 3D
               pp = repmat(prod(q{nnvars}(idx),2),[1,size(x,2)]); %product for this configuration 
        
               denom = q{nnvars}(idx);
               denom(find(denom==0)) = realmin;
               result(idx) = result(idx) + pp./denom;
            end
            
            %  update global distribution
            a = repmat(iir{nnvars},[1,1,qq]);
            b = repmat(jjr{nnvars},[1,1,qq]);
            c = permute(repmat((1:qq)',[1 size(a,1) size(a,2)]),[2 3 1]);
            gidx = sub2ind(size(buffer),a,b,c);
            buffer(gidx) = result;
         end
      end
      
      % initialize r from the global data in buffer
      for nnfuns = minfuns:maxfuns
         a = repmat(iic{nnfuns},[1,1,qq]);
         b = repmat(jjc{nnfuns},[1,1,qq]);
         c = permute(repmat((1:qq)',[1 size(a,1) size(a,2)]),[2 3 1]);
         gidx = sub2ind(size(buffer),a,b,c);
         r{nnfuns} = buffer(gidx);
      end

      
      %vertical step
      buffer = zeros([size(H),qq]);
      QQ = zeros(qq,size(H,2));
      for nnfuns = minfuns:maxfuns
         if(~isempty(Hc{nnfuns})) % make sure the are variables for this case
            %calculate products
            pp = repmat( prod ( r{nnfuns},1),[size(r{nnfuns},1),1]).*ff{nnfuns}; %product for this configuration 
            denom = r{nnfuns};
            denom(find(denom==0)) = realmin;
            result = pp./denom;
            result = result./repmat((sum(result,3)),[1,1,qq]); %normalize to distribution
            %  update global distribution
            a = repmat(iic{nnfuns},[1,1,qq]);
            b = repmat(jjc{nnfuns},[1,1,qq]);
            c = permute(repmat((1:qq)',[1 size(a,1) size(a,2)]),[2 3 1]);
            gidx = sub2ind(size(buffer),a,b,c);
            buffer(gidx) = result;
            
            Q{nnfuns} = pp.*ff{nnfuns};
            b = repmat(jjc{nnfuns}(1,:),[qq,1]);
            c = repmat((1:qq)',[1, size(b,2)]);
            qidx =  sub2ind(size(QQ),c,b);
            QQ(qidx) = squeeze(Q{nnfuns}(1,:,:))';
         end
      end
      

      
      % initialize q from the global data in buffer
      for nnvars = minvars:maxvars
         a = repmat(iir{nnvars},[1,1,qq]);
         b = repmat(jjr{nnvars},[1,1,qq]);
         c = permute(repmat((1:qq)',[1 size(a,1) size(a,2)]),[2 3 1]);
         gidx = sub2ind(size(buffer),a,b,c);
         q{nnvars} = buffer(gidx);
      end
   
      
      %tentative decoding
      QQ = QQ ./ repmat(sum(QQ,1),[qq 1]); %normalize - can be used as soft outputs
      [xi xj sx] = find(QQ == repmat(max(QQ),[size(QQ,1),1]));
      x_hat = xi-1;
      if ldpc_encode(x_hat,H',qq) == 0, success = 1; end
   end
end % end of nonbinary case

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -