📄 relaxation_ssm.m
字号:
function [D, a] = Relaxation_SSM(train_features, train_targets, params, region)
% Classify using the single-sample relaxation with margin algorithm
% Inputs:
% features - Train features
% targets - Train targets
% param - [Max iter, Margin, Convergence rate]
% region - Decision region vector: [-x x -y y number_of_points]
%
% Outputs
% D - Decision sufrace
% a - Classifier weights
[c, n] = size(train_features);
[Max_iter, b, eta] = process_params(params);
y = [train_features ; ones(1,n)];
train_zero = find(train_targets == 0);
%Preprocessing
processed_features = y;
processed_features(:,train_zero) = -processed_features(:,train_zero);
%Initial weights
a = sum(processed_features')';
iter = 0;
k = 0;
while ((sum(a'*processed_features < b)>0) & (iter < Max_iter))
iter = iter + 1;
%k <- (k+1) mod n
k = mod(k+1,n);
if (k == 0),
k = n;
end
if (a'*processed_features(:,k) <= b),
% a <- a + eta*sum((b-w'*Yk)/||Yk||*Yk)
grad = (b-a'*y(:,k))./sum(y(:,k).^2);
update = grad.*y(:,k);
a = a + eta * update;
end
end
if (iter == Max_iter),
disp(['Maximum iteration (' num2str(Max_iter) ') reached']);
end
%Find decision region
N = region(5);
x = ones(N,1) * linspace (region(1),region(2),N);
y = linspace (region(3),region(4),N)' * ones(1,N);
D = (a(1).*x + a(2).*y + a(c+1)> 0);
a = a';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -