📄 rda.m
字号:
function D = RDA (train_features, train_targets, lamda, region)
% Classify using the Regularized descriminant analysis (Friedman shrinkage algorithm)
% Inputs:
% features - Train features
% targets - Train targets
% lamda - Parameter for the algorithm
% region - Decision region vector: [-x x -y y number_of_points]
%
% Outputs
% D - Decision sufrace
train_one = find(train_targets == 1);
train_zero = find(train_targets == 0);
%Estimate MLE mean and covariance for class 0
m0 = mean(train_features(:,train_zero)');
s0 = cov(train_features(:,train_zero)',1);
n0 = length(train_zero);
%Estimate MLE mean and covariance for class 1
m1 = mean(train_features(:,train_one)');
s1 = cov(train_features(:,train_one)',1);
n1 = length(train_one);
p0 = n0 / (n0+n1);
%Shrink for class 0
S = n0 * s0;
n = n0;
sigma0 = zeros(2);
nk = n;
sk = S;
for i = 1:n,
sk = (1 - lamda)*sk + lamda*S;
nk = (1 - lamda)*nk + lamda*n;
sigma0 = sk / nk;
sigma0 = (1 - lamda) * sigma0 + lamda/2*trace(sigma0)*eye(2);
sk = sigma0 * nk;
end
%Shrink for class 1
S = n1 * s1;
n = n1;
sigma1 = zeros(2);
nk = n;
sk = S;
for i = 1:n,
sk = (1 - lamda)*sk + lamda*S;
nk = (1 - lamda)*nk + lamda*n;
sigma1 = sk / nk;
sigma1 = (1 - lamda) * sigma1 + lamda/2*trace(sigma1)*eye(2);
sk = sigma1 * nk;
end
param_struct.m0 = m0;
param_struct.m1 = m1;
param_struct.s0 = sigma0;
param_struct.s1 = sigma1;
param_struct.w0 = 1;
param_struct.w1 = 1;
param_struct.p0 = p0;
D = decision_region(param_struct, region);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -