📄 voted_perceptron.m
字号:
function D = voted_perceptron(train_features, train_targets, params, region);
% Classify using the Perceptron algorithm
% Inputs:
% features - Train features
% targets - Train targets
% Params:
% 1. NumberOfPerceptrons
% 2. Kernel method (Linear, Polynomial, Gaussian)
% 3. Method's parameters ( Linear - none, Polinomial - power, Gaussian - sigma )
% region - Decision region vector: [-x x -y y number_of_points]
%
% Outputs
% D - Decision sufrace
%
% Coded by: Igor Makienko and Victor Yosef
[NumberOfPerceptrons, method, alg_param] = process_params(params);
[c, n] = size(train_features);
train_features = [train_features ; ones(1,n)];
train_one = find(train_targets == 1);
train_zero = find(train_targets == 0);
%Preprocessing
processed_features = train_features;
processed_features(:,train_zero) = -processed_features(:,train_zero);
%Initial weights for Linear case:
w_percept = rand(c+1,NumberOfPerceptrons);
%Initial alphas for kernel method:
alpha = rand(n,NumberOfPerceptrons);
%Initial permutation matrix for kernel case;
switch method
case 'Polynomial'
perm = polyn(processed_features', processed_features',alg_param);
case 'Gaussian'
perm = gaus(processed_features',processed_features',alg_param);
end
%Train targets for kernels' case [-1 1] :
t = 2 * train_targets - 1;
%Step for kernel case :
etta = 1;
%Initial success vector:
w_sucesses = ones(NumberOfPerceptrons,1);
correct_classified = 0;
iter = 0;
max_iter = 500;
while (iter < max_iter)
iter = iter + 1;
indice = 1 + floor(rand(1)*n);
switch method
case 'Linear',
InnerProduct = w_percept' * processed_features(:,indice);
NegInnerProduct = (InnerProduct<=0);
PosInnerProduct = (InnerProduct>0);
w_sucesses = ones(size(w_sucesses)) + w_sucesses.*PosInnerProduct;
w_percept(:,find(NegInnerProduct)) = w_percept(:,find(NegInnerProduct))...
+ processed_features(:,indice) * ones(1,sum(NegInnerProduct));
case {'Polynomial','Gaussian'}
InnerProduct = perm(indice,:) * ((alpha'.*(ones(size(alpha,2),1)*t)))' ;
NegInnerProduct = (InnerProduct<=0)';
PosInnerProduct = (InnerProduct>0)';
w_sucesses = ones(size(w_sucesses)) + w_sucesses.*PosInnerProduct;
alpha(indice,find(NegInnerProduct)) = alpha(indice,find(NegInnerProduct))...
+ etta * ones(1,sum(NegInnerProduct));
otherwise
error('Method unknown');
end
end
if (iter == max_iter),
disp(['Maximum iteration (' num2str(max_iter) ') reached'])
end
%Find decision region
N = region(5);
x = ones(N,1) * linspace (region(1),region(2),N);
y = linspace (region(3),region(4),N)' * ones(1,N);
D = zeros(N);
switch method
case 'Linear',
for i = 1:NumberOfPerceptrons
D = D + w_sucesses(i) * (2 * ((w_percept(1,i).*x + w_percept(2,i).*y + w_percept(c+1,i))> 0) - 1);
end
case 'Polynomial',
temp = [x(:),y(:),ones(size(y(:)))];
perm = polyn(temp,processed_features',alg_param);
for i = 1:NumberOfPerceptrons,
temp = 2 * (sum(((ones(N^2,1)*(alpha(:,i)'.* t)) .* (perm))') > 0) - 1;
D = D + w_sucesses(i) * reshape(temp,N,N);
end
case 'Gaussian',
temp = [x(:),y(:),ones(size(y(:)))];
perm = gaus(temp,processed_features',alg_param);
for i = 1:NumberOfPerceptrons,
temp = 2 * (sum(((ones(N^2,1)*(alpha(:,i)'.* t)) .* (perm))') > 0) - 1;
D = D + w_sucesses(i) * reshape(temp,N,N);
end
end
D = (D>0);
disp(['Iterated ' num2str(iter) ' times.'])
function out = polyn(x,y,p);
%Routine function for polynomial kernel
%Input:
%x - (number of vectors)x(dim+1) matrix
%y - (number of vectors)x(dim+1) matrix
%p - order of polynom
out = (ones(size(x,1),size(y,1)) + x * y').^p;
function out = gaus(x,y,sigma);
%Routine function for gaussian kernel
%Input:
%x - (number of vectors)x(dim+1) matrix
%y - (number of vectors)x(dim+1) matrix
%sigma - std of gaussian kernel
x = x';y =y';c = [];
for i = 1:size(x,1),
c(:,:,i) = (ones(size(x,2),1) * y(i,:) - x(i,:)' * ones(1,size(y,2))).^2;
end
out = exp( - squeeze( sum(permute(c,[3,1,2]))) ./ (2 * sigma) ^2);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -